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0.1 Introduction

The main purpose of this paper is to give an analogue on the real line of restric-
tion phenomena of Fourier transforms first discovered by E. M. Stein in higher
dimensions in the late sixties. In fact, we are going to establish a result on the
real line which is almost as sharp as the Stein-Tomas theorem. This theorem says,
for a function from the Lebesgue space Lp(Rn), 1 ≤ p ≤ 2(n + 1)/(n + 3), n > 1,
that its Fourier transforms restricted to the unit sphere Sn−1 in n-dimensional
Euclidean space is well defined and square integrable against the uniform measure
on Sn−1. Starting in the seventies there have been many generalizations of this
result, mainly for situations where the unit sphere is replaced by some smooth
submanifold of Rn satisfying suitable curvature conditions, but similar questions
have also been discussed in the case where the Fourier transform is replaced by
a more general oscillatory integral operator (see e.g. [21, 6, 7, 18, 20, 16]). More
recently J. Bourgain[2] (see also, [3, 22]) has developed a method to improve on the
Stein-Tomas result for n ≥ 3 –the case n = 2 was settled by Stein in [9]. The liter-
ature on the subject might suggest that these restriction phenomena are genuinely
n-dimensional aspects of Fourier Analysis (see, e.g.[10]). We will see however, that
a proper analogue of restriction phenomena for Fourier transforms can be devel-
oped on the real line. In part this point of view is motivated by a recent result
of J. Bourgain[4, 23] showing that the bounds conjectured by H. Montgomery[17,
p. 142] on finite Dirichlet sums imply that Kakeya sets, i.e. sets containing a line
segment in every direction in Rn, have Hausdorff dimension n. This conclusion is
known to follow in a more natural way from the conjectured optimal restriction
estimates for spheres, which in dual form state that

∫

Rn

|f̂dσ|p dx ≤ C ‖f‖pLq(Sn−1,dσ), (1)

for p > 2n/(n− 1), q = ∞ and dσ being the uniform measure on Sn−1.
The question we ask here is whether we can replace, in (1), the measure dσ

by a probability measure dµ supported on a fractional dimensional compact set E
on R and still obtain the estimate (1) with appropriate nontrivial exponents p, q.
This, of course, requires that the Fourier transform of a measure dµ supported on a
set E of Hausdorff dimension α ∈ (0, 1) lies in Lp(R) for some p <∞. It is known
that this implies strong conditions on the structure of the set E and p > 2/α.
Now, by answering a question of A. Buerling, R. Salem in [19] constructed for
a fixed α ∈ (0, 1) and each ε > 0 measures dµ supported on a set of Hausdorff
dimension α whose Fourier transform lies in Lp(R) for p > 2/α+ ε (see [12] for a
nice historical background). For extensions of Salem’s result see [11, 13].

It seems natural to conjecture for the measures constructed by Salem that
the following (Lq, Lp)-estimate holds:

∫

R

|f̂dµ|p dx ≤ C ‖f‖pLq(dµ), (2)

with p > 2/α + ε and q = ∞. By multiplying the measure µ with a nonnegative
weight function a factorization argument would allow us to lower the q-exponent.
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An interpolation argument with the trivial (L1, L∞)-estimate would then give an
(L2, Lp)-estimate which is essentially what we are going to proof here for the
original measure dµ.

We would like to point out that we cannot exclude the possibility that the
inequality in (2) does hold for all p > 2

α + ε and q = 2. Note that in case of the
sphere the sharpness of the Stein-Tomas result follows from the curvature of the
sphere, or, by considering the equivalent problem for the n-torus from the fact
that Zn ∩{R < |x| ≤ R+1} contains an n− 1-dimensional arithmetic progression
of size R(n−1)/2. The analogue of this curvature condition for a 1/R neighborhood
of the set E = supp(µ) would be a suitable estimate on the size of an arithmetic
progression contained in it.

The importance of restriction theorems in analysis lies in their use to ex-
ploit certain cancellation properties of convolution operators. For example, the
Stein-Tomas result is central in understanding spherical summation operators cor-
responding to the Bochner-Riesz multipliers. The restriction theorems we are going
to show here will allows us to construct new Lp(R)-multipliers which in a sense
play the same role that the Bochner-Riesz multipliers do in Rn for n > 1.

As a further application we will see that the algebras Mp(I) ⊂ L∞(R) of
bounded convolution operators on Lp(R) whose corresponding multipliers are sup-
ported in an interval I have the property that Mp(I) 6= Mq(I) for 1 ≤ p < q < 2.
The fact that the M ′

ps are separated by characteristic functions has been shown
in [15] using Bourgain’s solution of the Λp-problem.

0.2 Hausdorff and Fourier dimension

We will begin with a short review of two notions of dimension. For details we refer
to Kahane’s book [11]. By a theorem of Frostman it is known that if E ⊂ Rn is
a compact set of Hausdorff dimension α, then there is a probability measure µ
supported on E satisfying µ(Br(x)) ≤ C rα, where Br(x) denotes a ball of radius
r centered at x.

Therefore, the β-potential (0 < β < n) of µ at a point x defined as

Iβ(µ)(x) =
∫

dµ(y)
|x− y|β

is a bounded function as long as β < α and this implies the finiteness of the
β-energy of µ defined as

Iβ(µ) =
∫ ∫

dµ(y)dµ(x)
|x− y|β

for β < α. On the other hand the theorem of Frostman shows that if Iα(ν) <∞,
for some probability measure ν supported on a compact set E, then its Hausdorff
dimension dimHE ≥ α. Since the Fourier transform of |x|−α, 0 < α < n, is
C |x|α−n, one can show (see [5]):

Iα(µ) = c

∫

Rn

|d̂µ(y)|2
|y|n−α dy.
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Thus Iα(µ) <∞ provides some information on the size of d̂µ, although it does not
even imply that d̂µ(x) → 0 as x→∞ (consider e.g. E = [0, 1] ⊂ R2).

We define the Fourier dimension of a compact set E ⊂ Rn, denoted by
dimF E, as the supremum of β ≥ 0 such that for some probability measure dµ
supported on E

|d̂µ(x)| ≤ C|x|− β
2 .

Since the last inequality –or even the weaker assumption that d̂µ ∈ Lp(Rn) for
p > 2n/β– implies Iα(µ) < ∞ for α < β, we always have dimF E ≤ dimH E.
In case E is a compact smooth α-dimensional submanifold of Rn and dµ is the
measure induced by Lebesgue measure on Rn we may expect an isotropic decay of
the form |x|−α/2 only under some conditions on the curvature and on the dimension
of E. Here are some examples:

(1) The unit sphere in Rn has Fourier dimension n− 1.

(2) The boundary of the unit cube in Rn has Fourier dimension 0.

(3) The Cantor middle third set has Fourier dimension 0 and Hausdorff dimen-
sion log 2/ log 3.

(4) R. Kaufman [13] has shown that for t > 0 the set Et of those real numbers
x ∈ [0, 1] such that

||qx|| ≤ q−1−t

has solutions for arbitrarily large integers q, ||x|| denotes the distance to
the nearest integer, has Fourier dimension and Hausdorff dimension equal to

2
2+t (see also [1]). The statement about the Hausdorff dimension for Et was
shown by V. Jarnik (see [8]).

These examples show that Hausdorff dimension and Fourier dimension do not agree
in general. This is not surprising since Hausdorff dimension measures a metric
property of a set, whereas the Fourier dimension measures an arithmetic property
of a set. However, the sets in examples (1) and (4) do have the property that their
Fourier dimension and Hausdorff dimension agree. Before R. Kaufman showed
(by a deterministic method) that the sets in example (4) share this property, there
were probabilistic constructions which provided subsets of the real line of fractional
Hausdorff dimension having the same Fourier dimension. In fact, the existence of
sets having this property was first shown by R. Salem [19] and they are named after
him. Later J.-P. Kahane [11] provided a rich class of Salem sets by showing that
images of compact sets of a given Hausdorff dimension under Brownian motion
are almost surely Salem sets.

0.3 Salem’s construction

We begin with a generalization of the classical Cantor type construction (see [24,
p.194]). Let M > 2 be an even integer, N = MM . Choose ξ ∈ (0, 1/N) and
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let points 0 < a1 < a2 < · · · < aN < 1 be given such that they are linearly
independent over the rational numbers and such that

0 < a1 < 1/N − ξ and ξ < ak − ak−1 < 1/N, k = 2, . . . , N. (3)

On an interval [A,B] of length L, we perform a dissection of type (N, a1, . . . , aN , ξ)
by calling the closed intervals

[A+ Lak, A+ L(ak + ξ)], k = 1, . . . , N

white and the complementary intervals black. Let Ξ = (ξk)k≥1 be a sequence such
that

(1− 1
2k2

) ξ ≤ ξk ≤ ξ, k ≥ 1.

Starting with E0 = [0, 1], we perform a dissection of type (N, a1, ..., aN , ξ1) and
remove the black intervals, thereby obtaining a set E1 which is a union of N
intervals each of length ξ1. On each remaining interval we perform a dissection of
type (N, a1, ..., aN , ξ2), remove the black intervals and so obtain a set E2 of N2

intervals each of length ξ1ξ2. After n steps we obtain a set En of Nn intervals each
of length ξ1ξ2...ξn. Put

E =
⋂

n≥0

En.

Then E is a perfect set having measure 0 if Nnξn → 0 and Hausdorff dimension
α if we choose ξ = N−1/α.

For each n ∈ N, let Fn be a continuous nondecreasing function satisfying:

• Fn(0) = 0 for x ≤ 0 and Fn(1) = 1 for x ≥ 1.

• Fn increases linearly by 1/Nn on each white interval in En.

• Fn is constant on each black interval in En.

Let F = limn→∞ Fn. Then F is a nondecreasing continuous function. To com-
pute the Fourier transform of the corresponding measure, we put P (x) =
1
N

∑
1≤k≤N eiakx. It is easy to see that

d̂Fn+1(x) = P (x)P (xξ1)...P (xξ1...ξn)
eiξ1...ξnx − 1
iξ1...ξnx

.

Hence
d̂F (x) = P (x)

∏

n≥1

P (xξ1...ξn).

Note that E and F do depend on Ξ. The mentioned result of Salem [19] is the
following one

Theorem 0.4. Given ε > 0, there is M > 2 and a sequence Ξ as above such that

|d̂F (x)| ≤ Cε |x|−α
2 +ε.



6

To make the paper self contained we will sketch the proof below. We first
need to get bounds on each individual factor in the product forming d̂F .

Lemma 0.5. (i) |P (x)| ≤ 1.

(ii) Let p = 2k be an even integer. Then there exists T0 = T0(N, ai, p) such that
for T > T0 and all b ∈ R

(
1
T

∫ b+T

b

|P (x)|pdx
) 1

p

≤
√
p√
N
.

The first part is trivial and for the second we apply to the k-th powers of P
the inequality

1
T

∫ b+T

b

|
∑
γ

cγe
iγx|2dx ≤

∑
|cγ |2 +

∑

γ 6=γ′

|cγcγ′ |
T |γ − γ′| ,

where the frequencies γ lie in a finite set of real numbers. Choosing T large enough
and using the linear independence of the ak’s we may bound the term T |γ − γ′|
from below. Then a simple computation gives the bound in the lemma.

Now the random construction comes in. Let ζn, n ≥ 1, be a Steinhaus se-
quence, i.e. a sequence of independent random variables mapping [0, 1] onto the
unit cube in infinite dimensions (see [11]). It is known that for measurable functions
f on RK we have

∫ 1

0

f(ζ1(ω), . . . , ζK(ω)) dω =
∫

[0,1]K
f(t1, . . . , tK) dt1 . . . dtK .

We put An = (1− 1
2n2 )ξ and let ξn(ω) = An + (ξ−An)ζn(ω). Since |P (x)| ≤ 1 we

get

∫ 1

0

|d̂Fω(x)|Mdω ≤
∫ 1

0

∏

K≥n≥1

|P (xξ1(ω)...ξn(ω))|Mdω

=
∫

[0,1]K

∏

K≥n≥1

|P (xξ1...ξn)|M dζ1 . . . dζK .

Integrating the last factor in the product with respect to the last variable ζK gives

∫

[0,1]

|P (xξ1...ξK)|M dζK =
1
T

∫ b+T

b

|P (x)|Mdx,

where T = xξ1 . . . ξK−1(ξ − AK) ≥ C x ξK K−2. This last expression is monotone
decreasing in K. Hence, choosing K = K(x) such that C xξK K−2 ≥ T0 we may
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apply Lemma 0.3.2. Moreover, having chosen K we also have, for n < K, that
C x ξn n−2 ≥ T0. Hence, successive integration yields

∫ 1

0

|d̂Fω(x)|Mdω ≤
∫

[0,1]K

∏

K≥n≥1

|P (xξ1...ξn)|M dζ1 . . . dζK

≤
(√

M√
N

)M ∫

[0,1]K−1

∏

K−1≥n≥1

|P (xξ1...ξn)|M dζ1 . . . dζK−1

≤
(√

M√
N

)MK

.

A simple computation shows, for x sufficiently large, that we can take

K(x) > (1− 1√
M

)
log x
| log ξ| .

Hence, for |x| > C(T0, ξ) and using α = logN/| log ξ|, we obtain

∫ 1

0

|d̂Fω(x)|Mdω ≤ C |x|−α
2M(1− 1√

M
)(1− log M

log N ) ≤ C |x|−α
2M(1− 2√

M
)
,

where in the last line we have put N = MM . This gives

∫ 1

0

∑

n≥1

(
|n|α

2 (1− 4√
M

)|d̂Fω(εn)|
)M

dω ≤ C,

uniformly for ε ∈ [1, 2]. Therefore, the series converges for almost every ω which
in turn implies

|d̂Fω(x)| ≤ CM |x|−α
2 (1− 4√

M
)
, for a.e. ω ∈ [0, 1]. (4)

Besides Salem’s result we will need the following regularity property of the
function F = Fω which holds for all ω ∈ [0, 1].

Proposition 0.6. There is a constant C, depending only on N such that for x, y ∈
R

|F (x)− F (y)| ≤ C |x− y|α.
To the prove this let x, y ∈ [0, 1] and suppose that y > x. Since F is constant

on black intervals complementary to E, we may assume that x, y lie in E. Let k
be the smallest integer such that after k dissections at least two black intervals lie
in [x, y]. Then [x, y] contains a white interval and

y − x ≥ ξ1 . . . ξk ≥ ξk
∏

1≤m≤k
(1− 1

2m2
) ≥ C ξk.
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Now, after k − 1 dissections there is at most one black interval (a, b) contained in
[x, y]. Hence using N = 1

ξα we find

F (y)− F (x) = F (y)− F (b) + F (a)− F (x) ≤ 2
Nk−1

≤ C ξkα ≤ C (y − x)α.

Remark 0.7. In [19] R. Salem provides a refined method to construct a monotone
function F whose Fourier transform is of order Ω(x)|x|−α/2, with Ω increasing
slower then any power of x. He achieves this by increasing, at each step of the
dissection, the number of intervals, i.e. Ek is obtained from Ek−1 by performing
a dissection of type (N(k), a(k)

1 , . . . , a
(k)
N(k), ξk) on each interval in Ek−1 with N(k)

increasing; in fact, we may take N(k) = k + 1. Also, for fixed k = 1, 2, .. the
ξk and a

(n)
j satisfy the conditions in (3) and ξ(n)(1 − 1/(n + 1)2) ≤ ξn ≤ ξ(n)

with ξ(n) = N(n)−1/α. In this situation a slight variation of the argument proving
Proposition 0.3.3 gives for the analogous function F :

F (y)− F (x) ≤ 2
N(1) . . . N(k − 1)

= 2N(k)(ξ(1) . . . ξ(k))α.

Now, with the particular choice N(k) = k+1 we find the last term is bounded by a
constant times (k+ 1)(log(k+ 1)!)−1 (y− x)α (1 + | log(y− x)|). Hence, Stirling’s
formula gives

|F (y)− F (x)| ≤ C |y − x|α (1 + | log(y − x)|).

0.8 A restriction theorem on the real line

As an application of Young’s inequality and the fact that the Fourier transform
of the measures constructed by Salem lie in a nontrivial Lp(R), one can get a
restriction result for Fourier transforms of functions in Lp(R) for p close to 1 (by
following E.M. Stein’s original argument [9]). To improve on this range we will
prove the following result

Theorem 0.9. Let µ be a compactly supported positive measure on Rn which
satisfies the following properties.

(i) There is β > 0 such that |d̂µ(x)| ≤ C |x|−β/2.
(ii) There is α > 0 such that µ(Br(x)) ≤ C rα for every ball Br(x) of radius r

centered at x.

Then, for 1 ≤ p < 2(2n−2α+β)
4(n−α)+β , we have

(∫
|f̂ |2dµ

) 1
2

≤ C ‖f‖Lp(Rn). (5)
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Proof. We have ‖f̂‖2L2(dµ) ≤ ‖f ∗ d̂µ‖p′ ‖f‖p with p′ the dual exponent of p.

The theorem follows if we can show that the convolution operator Tf = d̂µ ∗ f
is bounded from Lp → Lp

′
, for p′ > 2(2n−2α+β)

β . Let ϕk = ϕ( ·
2k ) ∈ C∞0 , 0 ≤

ϕk ≤ 1, have support in the spherical annulus {2k−1 ≤ |x| ≤ 2k+1} and define
ϕ0 ∈ C∞0 (|x| ≤ 2) such that

∑
k≥0 ϕk = 1. We decompose T according to this

partition: Tf =
∑
k≥0 Tkf , where Tkf = (ϕkd̂µ) ∗ f . Then by (i) we have

||Tk||L1→L∞ ≤ ‖ϕk d̂µ‖∞ ≤ C 2−k
β
2 . (6)

By Plancherel’s Theorem we get for the norm of the operators Tk on L2

||Tk||L2→L2 ≤ C sup
x∈Rn

|ϕ̂k ∗ dµ(x)|

≤ C 2kn sup
x∈Rn

∫
1

(1 + 2k|x− y|)N dµ(y)

= C ′ 2kn sup
x∈Rn

∫ ∫ ∞

0

χB r
2k

(x)(y) (1 + r)−N−1 dr dµ(y)

= C ′ 2kn sup
x∈Rn

∫ ∞

0

µ(B r

2k
(x)) (1 + r)−N−1 dr.

Using our assumption (ii) on the regularity of the measure µ, i.e. µ(B r

2k
(x)) ≤

C rα 2−kα, we get

||Tk||L2→L2 ≤ C 2k(n−α). (7)

Interpolating the bounds (6) and (7) gives

||Tk||Lp→Lp′ ≤ C 2k(
2n−2α+β

p′ − β
2 )
.

Hence, summing a geometric series we see that T =
∑

Tk is bounded from Lp to
Lp

′
for p′ > 22n−2α+β

β .
As we have seen in the previous section there exist sets E ⊂ [0, 1] supporting

a measure dF that satisfies regularity condition (ii) with α = dimH E and the
condition on the Fourier transform in (i) with β = α(1− 4√

M
). Hence, we get the

following result

Corollary 0.10. Let p0 <
2(2−α)
4−3α and choose M in (4) sufficiently large. Then

∫

E

|f̂ |2dF ≤ C ‖f‖2Lp0 (R),

where C depends only on M .

Remark 0.11. (1) For the uniform measure on Sn−1, Theorem 0.4.1 gives the
Stein-Tomas theorem except for the endpoint p = 2(n+1)/(n+3). Here α = n−1,
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which simply follows from Sn−1 being a smooth (n − 1)-dimensional submanifold
of Rn and β = n− 1, reflecting the fact that Sn−1 has nonvanishing curvature.

(2) It is an open question whether Corollary 0.4.2 holds for some p in the
interval ( 2(2−α)

4−3α , 2
2−α ). This is interesting because in case 2/(2 − α) is the right

critical exponent, a localization to scale R seems to shed some new light on the
construction of Λ(p)-sets.

(3) Suppose E and F are as in the corollary and, moreover, that E has
Hausdorff dimension α = 1

2 + ε, ε > 0. Choosing M large enough we find d̂F ∈
L4(R). Then using Plancherel’s theorem we get

‖ĝdF‖44 =
∫

R

|g dF ∗ g dF |2 dx ≤ ‖g‖4∞ ‖d̂F‖44.

A factorization argument (see [2]) shows that there is a nonnegative weight function
ω with

∫
E
ωdF = 1 such that the measure dµ = ωdF satisfies

‖ĝdµ‖4 ≤ C ‖g‖Lq(dµ)

for q > 4. It would be interesting to know whether this estimate also holds for some
q < 4.

0.12 Application to multiplier theory

We proceed to construct Lp-multipliers on R which may serve as analogues of the
Bochner-Riesz multipliers in Rn, n > 1. Suppose that E ⊂ [0, 1] is a compact set of
Hausdorff dimension α supporting a measure µ satisfying both |d̂µ(x)| ≤ Cβ |x|− β

2

and the regularity estimates µ(Br(x)) ≤ C rα. Let ψ ∈ C∞0 ([−1, 1]), ψ(0) 6= 0, be
an even function and define kz(x) = ψ(x)

|x|α−z , z > 0. For z > 0, we will consider the
multipliers given by

mz(x) =
∫

kz(x− y) dµ(y).

Let Tz be the convolution operator corresponding to the multiplier mz. Obviously,
since kz and µ have compact support, the same holds for mz. Furthermore, the
analysis in the proof of Theorem 0.4.1 shows that mz is a bounded measurable
function provided z > 0. Hence, Tz is bounded on L2(R). To get a necessary
condition for mz to be a multiplier for Lp(R), we note that Tzϕ = m̂z for a
testfunction ϕ satisfying ϕ(x) = 1 for x ∈ supp (mz). Now, assuming m̂z = d̂µ k̂z ∈
Lp(R) and using k̂z(x) ≈ C ψ(0) |x|−(1+z−α) and |d̂µ| ≤ C |x|−β/2 we find that

∫
|d̂µ|p(1+ 2

β (1+z−α)) dx ≤ C

∫
|d̂µ|p |k̂z|p dx < ∞.

Hence, Hölder’s inequality gives Iσ(µ) < ∞, for all σ < 2
p(1+ 2

β (1+z−α))
. Since

α = dimHE ≥ σ we get the necessary condition p ≥ 2β
α(2+2z−2α+β) . Note that for

this condition we did not use the local regularity of the measure µ.
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Theorem 0.13. Let 1 ≤ p < 2(2−2α+β)
4−4α+β . Then Tz is a bounded operator on Lp(R)

for p > 2
2z+2−α .

Proof. We proceed as in the proof of Theorem 0.4.1, i.e. we first decompose Tz
into dyadic pieces in the same way as in the proof of Theorem 0.4.1; Tzf =∑
k≥0(ϕkm̂z) ∗ f =

∑
k≥0 Tkf . To bound the norm of each individual term Tk we

note, since ϕk has support in a dyadic interval of length 2k, that it is enough to
establish ∫

{x| |x|≤2k+1}
|Tkf |p dx ≤ C 2−εk

∫

{x| |x|≤2k}
|f |p dx

for some ε > 0. Hölders inequality implies

‖Tkf‖Lp({x| |x|<2k+1}) ≤ C 2k(
1
p− 1

2 ) ‖Tkf‖L2({x| |x|<2k+1})

and, using Plancherel’s theorem, we bound the L2-norm from above by

‖Tkf‖2L2(R) = ‖ϕkk̂z d̂µ ∗ f‖22
= ‖{(ϕkk̂z)∨ ∗ dµ} f̂ ‖22
≤ ‖ |(ϕkk̂z)∨| ∗ dµ ‖∞ ‖ {|(ϕkk̂z)∨| ∗ dµ} |f̂ |2 ‖1.

Now, by Fubini’s theorem the above L1-norm equals
∫
R

|(ϕkk̂z)∨(x) | {dµ ∗
|f̂ |2(x) } dx, which we estimate further by

‖(ϕkk̂z)∨‖1 sup
x

∫
|f̂(x− y)|2dµ(y).

Using translation invariance we apply Theorem0.4.1 and see that the last integral
is bounded by ‖f‖2p. Hence

‖Tkf‖22 ≤ C ‖ |(ϕkk̂z)∨| ∗ dµ ‖∞ ‖(ϕkk̂z)∨‖1 ‖f‖2p.

Now, since k̂z is a smooth function which decays like |x|−(1+z−α), we may assume
that Φk = 2k(1+z−α)ϕkk̂z is a function which shares the same properties as ϕk. As
in the proof of Theorem 0.4.1 we obtain

‖ |(ϕkk̂z)∨| ∗ dµ ‖∞ ≤ 2−k(1+z−α) ‖ |Φ∨k | ∗ dµ‖∞ ≤ C 2−k(1+z−α) 2k(1−α)

and ‖(ϕkk̂z)∨‖1 ≤ 2−k(1+z−α) ‖Φ∨k ‖1 ≤ C 2−k(1+z−α). Collecting terms gives

‖Tkf‖Lp ≤ 2k(−1−z+α/2+ 1
p )‖f‖p (8)

and, by summing a geometric series we see, for p > 2
2z+2−α , that the operator Tz

is bounded on Lp(R).
Obviously there is a gap between our necessary and sufficient conditions for

mz to be a multiplier for Lp(R). However, since this gap can be made arbitrarily
small we get:
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Corollary 0.14. Let I be an interval and let Mp(I) be the algebra consisting of
all Lp(R)-multipliers with support in I. Then Mp(I) 6= Mq(I) for 1 ≤ p < q < 2.

Remark 0.15. In the same way as above we may construct multipliers mz =
kz ∗ dµ, z > 0, with dµ satisfying a better estimate on the Fourier transform side
as noted in Remark 0.3.4. Then p ≥ 2

2z+2−α is a necessary condition for mz to be a
multiplier for Lp(R) and, because the weaker local regularity estimate µ(Br(x)) ≤
Crα(1 + | log r|) causes only a power in k in the bound (8), one may close the
mentioned gap in this case. However, the case of the critical line p = 2

2z+2−α
remains unanswered.
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