Optimal extension of the Hausdorff-Young inequality

G. Mockenhaupt and W.J. Ricker

Abstract

Given $1<p<2$, we construct a Banach function space $\mathbf{F}^{p}(\mathbb{T})$ with σ-order continuous norm which contains $L^{p}(\mathbb{T})$ and has the property that the Fourier transform map $F: L^{p}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ has a continuous $\ell^{p^{\prime}}(\mathbb{Z})$-valued extension to $\mathbf{F}^{p}(\mathbb{T})$. Moreover, $\mathbf{F}^{p}(\mathbb{T})$ is maximal with these properties and satisfies $L^{p}(\mathbb{T}) \subset \mathbf{F}^{p}(\mathbb{T}) \subset L^{1}(\mathbb{T})$ with both containments proper. Each $\mathbf{F}^{p}(\mathbb{T})$ turns out to be a weakly sequentially complete, translation invariant, homogeneous Banach space and consists precisely of those functions $f \in L^{1}(\mathbb{T})$ such that $\widehat{f \chi_{A}} \in \ell^{p^{\prime}}(\mathbb{Z})$ for every Borel set $A \subset \mathbb{T}$. This answers a question of R.E. Edwards posed some 40 years ago.

1 Introduction and main results

It is known that for $1 \leq p \leq 2$ the Fourier transform F maps $L^{p}(\mathbb{T})$ into $\ell^{p^{\prime}}(\mathbb{Z})$, where $1 / p^{\prime}+1 / p=1$, and the Hausdorff-Young inequality

$$
\|\hat{f}\|_{p^{\prime}} \leq\|f\|_{p}, \quad f \in L^{p}(\mathbb{T})
$$

ensures that F is continuous. Moreover, the Fourier transform is an injective map from distributions $D(\mathbb{T})$ into the space of sequences of polynomial growth. The theme of this note is to address the following question: Is the Hausdorff-Young inequality optimal? That is, keeping the range space $\ell^{p^{\prime}}(\mathbb{Z})$ fixed, is it possible to continuously extend the Fourier transform operator $F: L^{p}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ to a Banach function space $\mathbf{F}^{p}(\mathbb{T})$, over the probability space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), d t)$ (see Section 2 for the definition), which is larger than $L^{p}(\mathbb{T})$ and in such a way that $\mathbf{F}^{p}(\mathbb{T})$ is maximal (or optimal) with this property? Moreover, if so, can $\mathbf{F}^{p}(\mathbb{T})$ be identified in some "concrete" way? That there exist distributions which are not in $L^{p}(\mathbb{T})$, but whose Fourier transform lies in $\ell^{p^{\prime}}(\mathbb{Z})$, is known. Here are some examples (see [St, p.339],[Zyg, II, p.102]). For almost all sign changes $\sum_{n \geq 1} \pm n^{-1 / 2} \cos n x$ is not integrable while its Fourier transform is in all $\ell^{p^{\prime}}(\mathbb{Z})$ for $p^{\prime}>2$. An even more concrete example is a function with a Riemann singularity of order $0<\lambda<2$ at 0 , say

$$
\begin{equation*}
f_{\lambda}(x)=e^{i / x} x^{-\lambda}, \quad 0<x<1 \tag{1.1}
\end{equation*}
$$

and $f_{\lambda}(x)=0$ elsewhere in $(-\pi, \pi]$, which has Fourier transform $\hat{f}_{\lambda}(n)=\sqrt{i \pi} e^{2 i \sqrt{n}} n^{-3 / 4+\lambda / 2}+$ $O\left(n^{-1+\lambda / 2}\right)$ if $n \rightarrow+\infty$ and decays like the power given in the O-term for $n \rightarrow-\infty$. Hence,
\hat{f}_{λ} lies in $\ell^{p^{\prime}}(\mathbb{Z})$ for certain $p^{\prime}>2$ depending on λ while, for $\lambda>1$, the function $f_{\lambda} \in L^{0}(\mathbb{T})$ is not integrable at 0 . Here, $L^{0}(\mathbb{T})$ denotes the space of all complex-valued $\mathcal{B}(\mathbb{T})$-measurable (i.e. Borel measurable) functions on \mathbb{T}.

Theorem 1.1. Let $1 \leq p \leq 2$. There exists a Banach function space $\mathbf{F}^{p}(\mathbb{T}) \subset L^{0}(\mathbb{T})$ with σ-order continuous norm $\|\cdot\|_{\mathbf{F}^{p}(\mathbb{T})}$ and having the following properties:
(i) $L^{p}(\mathbb{T})$ is continuously included in $\mathbf{F}^{p}(\mathbb{T})$ and the Fourier transform map $F: L^{p}(\mathbb{T}) \rightarrow$ $\ell^{p^{\prime}}(\mathbb{Z})$ has an extension to a continuous linear operator from $\mathbf{F}^{p}(\mathbb{T})$ into $\ell^{p^{\prime}}(\mathbb{Z})$. More precisely,

$$
\|f\|_{\mathbf{F}^{p}(\mathbb{T})} \leq 4\|f\|_{p}, \quad f \in L^{p}(\mathbb{T})
$$

(ii) If Z is any Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T})$, dt) with σ-order continuous norm such that $L^{p}(\mathbb{T})$ is continuously included in Z and F has an extension to a continuous linear operator from Z into $\ell^{p^{\prime}}(\mathbb{Z})$, then Z is continuously included in $\mathbf{F}^{p}(\mathbb{T})$.
(iii) $\mathbf{F}^{p}(\mathbb{T}) \subset L^{1}(\mathbb{T})$ with $\|f\|_{1} \leq\|f\|_{\mathbf{F}^{p}(\mathbb{T})}$. Moreover, the $\ell^{p^{\prime}}(\mathbb{Z})$-valued extension of F from $L^{p}(\mathbb{T})$ to $\mathbf{F}^{p}(\mathbb{T})$ is again the map $f \rightarrow \hat{f}$ for $f \in \mathbf{F}^{p}(\mathbb{T})$.

Theorem 1.1 justifies the statement (within a well defined and extensive class of spaces) that the Hausdorff-Young inequality has an $\ell^{p^{\prime}}(\mathbb{Z})$-valued extension to a larger maximal domain $\mathbf{F}^{p}(\mathbb{T})$, which we will call its optimal lattice domain. By $(\mathrm{ii}), \mathbf{F}^{p}(\mathbb{T})$ is unique up to isomorphism; its norm turns out to be

$$
\|f\|_{\mathbf{F}^{p}(\mathbb{T})}=\sup \left\{\int_{\mathbb{T}}|f||\check{\phi}| d t: \phi \in \ell^{p}(\mathbb{Z}),\|\phi\|_{p}=1\right\} .
$$

According to (iii), neither the random series mentioned above nor the functions (1.1) with Riemann singularities for $1<\lambda<2$ are contained in $\mathbf{F}^{p}(\mathbb{T})$. We remark that the above mentioned result and those below are also valid for higher dimensional tori $\mathbb{T}^{d}, d>1$. It will become apparent in the sequel that the restriction conjecture for the Fourier transform (see [St2]) can be rephrased as finding sharp bounds for the $\mathbf{F}^{p}\left(\mathbb{T}^{d}\right)$-norm of smooth bump functions with support in a δ-neighbourhood of the d-dimensional unit sphere.

We now turn to more concrete descriptions of $\mathbf{F}^{p}(\mathbb{T})$. Given $1 \leq p \leq 2$, define a vector subspace $V^{p}(\mathbb{T})$ of $L^{p^{\prime}}(\mathbb{T})$ by

$$
\begin{equation*}
V^{p}(\mathbb{T})=\left\{h \in L^{p^{\prime}}(\mathbb{T}): h=\check{\phi} \text { for some } \phi \in \ell^{p}(\mathbb{Z})\right\} \tag{1.2}
\end{equation*}
$$

For each $f \in L^{1}(\mathbb{T})$ define a linear map $S_{f}: L^{\infty}(\mathbb{T}) \rightarrow c_{0}(\mathbb{Z})$ by

$$
\begin{equation*}
S_{f}: g \mapsto \widehat{f g}, \quad g \in L^{\infty}(\mathbb{T}) \tag{1.3}
\end{equation*}
$$

Clearly S_{f} is continuous with operator norm $\left\|S_{f}\right\| \leq\|f\|_{1}$. For each $1 \leq p \leq 2$, let $\mathcal{L}\left(L^{\infty}(\mathbb{T}), \ell^{p^{\prime}}(\mathbb{Z})\right)$ denote the Banach space of all continuous operators $T: L^{\infty}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ equipped with the operator norm

$$
\|T\|_{\infty, p^{\prime}}=\sup _{\|g\|_{\infty}=1}\|T g\|_{p^{\prime}}
$$

If $f \in L^{1}(\mathbb{T})$ has the property that $\operatorname{Range}\left(S_{f}\right) \subset \ell^{p^{\prime}}(\mathbb{Z})$, then the closed graph theorem implies that $\left\|S_{f}\right\|_{\infty, p^{\prime}}<\infty$.
Theorem 1.2. Let $1 \leq p \leq 2$. Each of the spaces

$$
\begin{align*}
\Delta^{p}(\mathbb{T}) & =\left\{f \in L^{1}(\mathbb{T}): \int_{\mathbb{T}}|f g| d t<\infty, \forall g \in V^{p}(\mathbb{T})\right\}, \tag{1.4}\\
\Phi^{p}(\mathbb{T}) & =\left\{f \in L^{1}(\mathbb{T}): \widehat{f \chi_{A}} \in \ell^{p^{\prime}}(\mathbb{Z}), \forall A \in \mathcal{B}(\mathbb{T})\right\}, \tag{1.5}\\
\Gamma^{p}(\mathbb{T}) & =\left\{f \in L^{1}(\mathbb{T}): \text { Range }\left(S_{f}\right) \subset \ell^{p^{\prime}}(\mathbb{Z})\right\}, \tag{1.6}
\end{align*}
$$

coincides with the optimal lattice domain $\mathbf{F}^{p}(\mathbb{T})$ of the Hausdorff-Young inequality. Moreover, in the case of (1.6), the operator norm $\left\|S_{f}\right\|_{\infty, p^{\prime}}$ is equivalent to the norm of f in $\mathbf{F}^{p}(\mathbb{T})$, for each $f \in \mathbf{F}^{p}(\mathbb{T})$.
Remark 1.3. (i) For $p=1$ it turns out that $\mathbf{F}^{1}(\mathbb{T})=L^{1}(\mathbb{T})$ and for $p=2$ that $\mathbf{F}^{2}(\mathbb{T})=$ $L^{2}(\mathbb{T})$. So, both the Fourier transform maps $F: L^{1}(\mathbb{T}) \rightarrow \ell^{\infty}(\mathbb{Z})$ and $F: L^{2}(\mathbb{T}) \rightarrow$ $\ell^{2}(\mathbb{Z})$ are already defined on their optimal domain. Also, for $1 \leq p<q \leq 2$ we have $\ell^{p}(\mathbb{Z}) \subset \ell^{q}(\mathbb{Z})$ and therefore $V^{p}(\mathbb{T}) \subset V^{q}(\mathbb{T}) \subset L^{2}(\mathbb{T})$. It is then clear from (1.4) that $L^{2}(\mathbb{T}) \subset \mathbf{F}^{q}(\mathbb{T}) \subset \mathbf{F}^{p}(\mathbb{T}) \subset L^{1}(\mathbb{T})$.
(ii) It is not obvious from (1.5) that the space $\Phi^{p}(\mathbb{T})$ is actually an ideal relative to the pointwise a.e. order in $L^{0}(\mathbb{T})$. That is, if $f \in \Phi^{p}(\mathbb{T})$ and $g \in L^{0}(\mathbb{T})$ satisfies $|g| \leq|f|$ a.e., then also $g \in \Phi^{p}(\mathbb{T})$. Of course, being equal to the Banach function space $\mathbf{F}^{p}(\mathbb{T})$, it must have this property. In addition to having σ-order continuous norm, it will be seen that the optimal domain $\mathbf{F}^{p}(\mathbb{T})$ has other desirable properties; it is translation invariant, weakly sequentially complete, has the σ-Fatou property, etc. (see the end of Section 3).
(iii) For $1 \leq p \leq 2$, the following question was raised some forty years ago by R.E. Edwards, [Ed, p.206]; What can be said about the family of functions $f \in L^{1}(\mathbb{T})$ having the property that $\widehat{f \chi_{A}}$ lies in $\ell^{p^{\prime}}(\mathbb{Z})$ for all $A \in \mathcal{B}(\mathbb{T})$? Theorems 1.1 and 1.2 provide an exact answer: this family of functions is precisely the optimal lattice domain $\mathbf{F}^{p}(\mathbb{T})$ of the Fourier transform map $F: L^{p}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$.
Remark 1.3(iii) raises the question of whether $\mathbf{F}^{p}(\mathbb{T})$ is genuinely larger than $L^{p}(\mathbb{T})$.
Theorem 1.4. Let $1<p<2$. Then both the inclusions $L^{p}(\mathbb{T}) \subset \mathbf{F}^{p}(\mathbb{T}) \subset L^{1}(\mathbb{T})$ are proper.
Remark 1.5. It is known that there exists $f \in L^{1}(\mathbb{T})$ whose Fourier transform does not lie in $\ell^{p^{\prime}}(\mathbb{Z})$ for any $p<\infty$, e.g. $f(t)=\sum_{n=2}^{\infty} \frac{\cos n t}{\log n}$ has this property. Accordingly, the inclusion $\mathbf{F}^{p}(\mathbb{T}) \subset L^{1}(\mathbb{T})$ is always proper. That the other inclusion is also proper will be established in Section 4.

What is the connection between the (apparently) abstract space $\mathbf{F}^{p}(\mathbb{T})$ in the statement of Theorem 1.1 with the more concrete descriptions of $\mathbf{F}^{p}(\mathbb{T})$ given in Theorem 1.2? It is routine to check that the set function $m_{p}: \mathcal{B}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ defined by

$$
\begin{equation*}
m_{p}: A \mapsto F\left(\chi_{A}\right), \quad A \in \mathcal{B}(\mathbb{T}) \tag{1.7}
\end{equation*}
$$

is σ-additive, that is, it is an $\ell^{p^{\prime}}(\mathbb{Z})$-valued vector measure. Moreover, the $m_{p^{\prime}}$-null sets coincide with the Lebesgue null sets in \mathbb{T}. This crucial point allows us to view the Banach lattice $L^{1}\left(m_{p}\right)$ of all m_{p}-integrable functions (modulo m_{p}-null functions) as a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), d t)$. It is precisely the space $L^{1}\left(m_{p}\right)$ which is proved to have the optimality properties required of $\mathbf{F}^{p}(\mathbb{T})$ in Theorem 1.1. That is, $\mathbf{F}^{p}(\mathbb{T})=L^{1}\left(m_{p}\right)$ and the integration map $f \mapsto$ $\int_{\mathbb{T}} f d m_{p}$, from $L^{1}\left(m_{p}\right)$ to $\ell^{p^{\prime}}(\mathbb{Z})$, is precisely the continuous extension of F from $L^{p}(\mathbb{T})$ to $\mathbf{F}^{p}(\mathbb{T})$. This approach to optimal extensions, via the integration map of appropriate vector measures, has proved to be effective in recent years in the treatment of various operators/inequalities arising in classical analysis; see for example [CR1],[CR2],[CR3],[CR4],[OR1],[OR2] and the references therein. For a different extension of the Fourier transform we refer to $[\mathrm{Gu}]$ and the references therein.

2 Proof of Theorem 1.1

We begin with some preliminaries concerning integration with respect to a general vector measure. A set function $m: \Sigma \rightarrow X$, where X is a complex Banach space and Σ is a σ algebra of subsets of a non-empty set Ω, is called a vector measure if it is σ-additive, that is, $m\left(\cup_{n=1}^{\infty} A_{n}\right)=\sum_{n=1}^{\infty} m\left(A_{n}\right)$ for all pairwise disjoint sequences $\left\{A_{n}\right\}_{n=1}^{\infty}$ in Σ with the series being (norm) unconditionally convergent in X. A set $A \in \Sigma$ is called m-null if $m(B)=0$ for all $B \in \Sigma$ which are contained in A. The variation $|m|$ of m is the smallest, $[0, \infty]$-valued measure satisfying $\|m(A)\| \leq|m|(A)$, for all $A \in \Sigma$, and can be defined (as for scalar measures) via finite partitions, [DU, Ch.I]. If $|m|(\Omega)<\infty$, then m is said to have finite variation. The semi-variation of m is the set function $\|m\|: \Sigma \rightarrow[0, \infty)$ defined by

$$
\begin{equation*}
\|m\|(A):=\sup _{x^{\prime} \in X^{\prime},\left\|x^{\prime}\right\|=1}\left|\left\langle m, x^{\prime}\right\rangle\right|(A), \quad A \in \Sigma, \tag{2.1}
\end{equation*}
$$

where X^{\prime} is the dual Banach space of X and $\langle m, x\rangle$ denotes the complex measure $A \mapsto$ $\left\langle m(A), x^{\prime}\right\rangle$ on Σ, for each $x^{\prime} \in X^{\prime}$. Then

$$
\begin{equation*}
\sup _{B \in \Sigma, B \subset A}\|m(B)\| \leq\|m\|(A) \leq 4 \sup _{B \in \Sigma, B \subset A}\|m(B)\| \tag{2.2}
\end{equation*}
$$

for each $A \in \Sigma,[\mathrm{DU}, \mathrm{p} .4]$. The vector measure m is said to have relatively compact range if the closure of its range $m(\Sigma):=\{m(A): A \in \Sigma\}$ is a compact subset of X.

A Σ-measurable function $f: \Omega \rightarrow \mathbb{C}$ is called m-integrable if

$$
\begin{equation*}
\int_{\Omega}|f| d\left|\left\langle m, x^{\prime}\right\rangle\right|<\infty, \quad x^{\prime} \in X^{\prime} \tag{2.3}
\end{equation*}
$$

and for each $A \in \Sigma$ there exists a vector in X, necessarily unique and denoted by $\int_{A} f d m$, such that

$$
\begin{equation*}
\left\langle\int_{A} f d m, x^{\prime}\right\rangle=\int_{A} f d\left\langle m, x^{\prime}\right\rangle, \quad x^{\prime} \in X^{\prime} . \tag{2.4}
\end{equation*}
$$

By the Orlicz-Pettis theorem, [DU, p.22], the set function

$$
\begin{equation*}
m_{f}: A \mapsto \int_{A} f d m, \quad A \in \Sigma \tag{2.5}
\end{equation*}
$$

is also an X-valued vector measure. The linear space of all m-integrable functions is denoted by $L^{1}(m)$; it is equipped with the lattice seminorm

$$
\begin{equation*}
\|f\|_{L^{1}(m)}:=\sup _{x^{\prime} \in X^{\prime},\left\|x^{\prime}\right\|=1} \int_{\Omega}|f| d\left|\left\langle m, x^{\prime}\right\rangle\right| . \tag{2.6}
\end{equation*}
$$

Note that $\|f\|_{L^{1}(m)}=\left\|m_{f}\right\|(\Omega)$, where $\left\|m_{f}\right\|(\cdot)$ is the semi-variation of the vector measure m_{f}. It follows from (2.2) applied to m_{f} that

$$
\begin{equation*}
\sup _{A \in \Sigma}\left\|\int_{A} f d m\right\| \leq\|f\|_{L^{1}(m)} \leq 4 \sup _{A \in \Sigma}\left\|\int_{A} f d m\right\| \tag{2.7}
\end{equation*}
$$

for every $f \in L^{1}(m)$. A function $f \in L^{1}(m)$ is called m-null if $\|f\|_{L^{1}(m)}=0$ or equivalently, if m_{f} is the zero vector measure. The quotient space of $L^{1}(m)$ modulo m-null functions is again identified with (and denoted by) $L^{1}(m)$. Then $L^{1}(m)$ is complete (i.e. a Banach space), [FNR], and the \mathbb{C}-valued, Σ-simple functions are dense in $L^{1}(m)$, [Le, Theorem 3.5]. Moreover, $L^{1}(m)$ is a complex Banach lattice relative to the pointwise m-a.e. order on Ω and the norm given by (2.6). That is, $|f| \leq|g| m$-a.e. implies $\|f\|_{L^{1}(m)} \leq\|g\|_{L^{1}(m)}$. Moreover, the norm is σ-order continuous (as a consequence) of the dominated convergence theorem, [Le2, Theorem 2.2], meaning that if non-negative functions f_{n} decrease to 0 as $n \rightarrow \infty$ in the order of $L^{1}(m)$, then $f_{n} \rightarrow 0$ in $L^{1}(m)$ as $n \rightarrow \infty$. For these claims we refer to [FNR] and the references therein. Moreover, every Σ-measurable function $f: \Omega \rightarrow \mathbb{C}$ which satisfies $|f| \leq K, m$-a.e., for some $K>0$ (that is $f \in L^{\infty}(m)$), is necessarily m-integrable, [Le2, Theorem 2.2], and satisfies (via (2.6))

$$
\begin{equation*}
\|f\|_{L^{1}(m)} \leq\|f\|_{L^{\infty}(m)}\|m\|(\Omega) \tag{2.8}
\end{equation*}
$$

It follows from (2.7) that the integration map $I_{m}: f \mapsto \int_{\Omega} f d m$ is a continuous linear operator from $L^{1}(m)$ into X with operator norm $\left\|I_{m}\right\|=1$.

It is time to specialize to the particular vector measure (1.7).
Lemma 2.1. Let $1 \leq p \leq 2$.
(i) The vector measure $m_{p}: \mathcal{B}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ as given by (1.7) is mutually absolutely continuous with respect to Lebesgue measure on \mathbb{T} (i.e. m_{p}-null sets are Lebesgue null sets).
(ii) For $1<p \leq 2, m_{p}$ has infinite variation.
(iii) The containment $L^{1}\left(m_{p}\right) \subset L^{1}(\mathbb{T})$ is valid with

$$
\begin{equation*}
\|f\|_{1} \leq\|f\|_{L^{1}\left(m_{p}\right)}, \quad f \in L^{1}\left(m_{p}\right) \tag{2.9}
\end{equation*}
$$

Moreover, $L^{1}\left(m_{p}\right)$ is dense in $L^{1}(\mathbb{T})$.

Proof. (i) is clear from (1.7) and the definition of the Fourier transform. For, if $A \in \mathcal{B}(\mathbb{T})$ has Lebesgue measure zero, then $\widehat{\chi_{B}}=0$ for all $B \in \Sigma$ with $B \subset A$. So, A is m_{p}-null. On the other hand, suppose that $A \in \mathcal{B}(\mathbb{T})$ is m_{p}-null. Then, in particular, $\widehat{\chi_{A}}=0$ and hence, by injectivity of the Fourier transform, $\chi_{A}=0$ in $L^{p}(\mathbb{T})$, that is, $|A|=0$.
(ii) Fix $1<p \leq 2$ and an integer $N>1$. Set $A_{j}=[2 \pi(j-1) / N, 2 \pi j / N)$ for $1 \leq j \leq N$. Then the sets A_{j} are pairwise disjoint and $\left|A_{j}\right|=1 / N$ for each $1 \leq j \leq N$. It is routine to check that

$$
\left|\widehat{\chi A_{1}}(m)\right|=1 / N, \quad 0 \leq m<N
$$

and hence, that $\left\|\widehat{\chi_{A_{1}}}\right\|_{\ell^{\prime}(\mathbb{Z})} \geq N^{-1 / p}$. Since each function $\chi_{A_{j}}$ is a translate of $\chi_{A_{1}}$ for $1<j \leq$ N, it follows that

$$
\sum_{j=1}^{N}\left\|m_{p}\left(A_{j}\right)\right\|_{p^{\prime}}=\sum_{j=1}^{N}\left\|\widehat{\chi_{A_{j}}}\right\|_{p^{\prime}} \geq N^{1-\frac{1}{p}}
$$

Hence, m_{p} must have infinite variation.
(iii) We have, for $\chi_{\{0\}} \in\left(\ell^{p^{\prime}}(\mathbb{Z})\right)^{\prime}=\ell^{p}(\mathbb{Z})$, that

$$
\left\langle m_{p}(A), \chi_{\{0\}}\right\rangle=\widehat{\chi_{A}}(0)=|A|
$$

that is

$$
|A|=\left|\left\langle m_{p}, \chi_{\{0\}}\right\rangle\right|(A), \quad A \in \mathcal{B}(\mathbb{T}) .
$$

According to (2.6), if $f \in L^{1}\left(m_{p}\right)$, then $\int_{\mathbb{T}}|f| d t=\int_{\mathbb{T}}|f| d\left|\left\langle m_{p}, \chi_{\{0\}}\right\rangle\right|<\infty$ and so $f \in L^{1}(\mathbb{T})$. Moreover, since $\left\|\chi_{\{0\}}\right\|_{\ell^{p}(\mathbb{Z})}=1$, we obtain from (2.6) that

$$
\|f\|_{1}=\int_{\mathbb{T}}|f| d t=\int_{\mathbb{T}}|f| d\left|\left\langle m_{p}, \chi_{\{0\}}\right\rangle\right| \leq\|f\|_{L^{1}\left(m_{p}\right)}
$$

This establishes $L^{1}\left(m_{p}\right) \subset L^{1}(\mathbb{T})$.
According to (i), the $\mathcal{B}(\mathbb{T})$-simple functions in $L^{1}\left(m_{p}\right)$ coincide with those in $L^{1}(\mathbb{T})$. Hence, $L^{1}\left(m_{p}\right)$ is dense in $L^{1}(\mathbb{T})$.

Remark 2.2. For $p=1$ the vector measure m_{1} does have finite variation. Indeed, let $\left\{A_{k}\right\}$ be a Borel partition of \mathbb{T}. Then

$$
\sum_{k}\left\|m_{1}\left(A_{k}\right)\right\|_{\infty}=\sum_{k}\left\|\widehat{\chi_{k}}\right\|_{\infty} \leq \sum_{k}\left|A_{k}\right|=1
$$

and so $\left|m_{1}\right|(\mathbb{T})$ is finite.
A sublattice Z of $L^{0}(\mathbb{T})$ is an ideal if every $f \in L^{0}(\mathbb{T})$ satisfying $|f| \leq|h|$ for some $h \in Z$ is necessarily itself in Z. If, in addition, there is a norm on Z such that Z is a Banach lattice relative to this norm, for the order induced from $L^{0}(\mathbb{T})$, then Z is called a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), d t)$; see [Za, Ch.15]. Since the m_{p}-null sets and the Lebesgue null sets coincide, the previous recorded properties of the spaces $L^{1}(m)$, with m a general vector measure, when specialized to $L^{1}\left(m_{p}\right)$ imply that $L^{1}\left(m_{p}\right)$ is a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), d t)$.

Lemma 2.3. Let $1 \leq p \leq 2$. Then $L^{p}(\mathbb{T}) \subset L^{1}\left(m_{p}\right)$ and

$$
\begin{equation*}
\int_{A} f d m_{p}=\widehat{f \chi_{A}}, \quad A \in \mathcal{B}(\mathbb{T}) \tag{2.10}
\end{equation*}
$$

for every $f \in L^{p}(\mathbb{T})$. Moreover, we have

$$
\begin{equation*}
\|f\|_{L^{1}\left(m_{p}\right)} \leq 4\|f\|_{p}, \quad f \in L^{p}(\mathbb{T}) \tag{2.11}
\end{equation*}
$$

Proof. To verify $L^{p}(\mathbb{T}) \subset L^{1}\left(m_{p}\right)$ it suffices to show that non-negative functions $f \in L^{p}(\mathbb{T})$ belong to $L^{1}\left(m_{p}\right)$. Choose simple functions $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ with $0 \leq s_{n} \uparrow f$ pointwise on \mathbb{T} and fix $A \in \mathcal{B}(\mathbb{T})$. Since $L^{p}(\mathbb{T})$ has σ-order continuous norm, we conclude that $\chi_{A} s_{n} \rightarrow \chi_{A} f$ in $L^{p}(\mathbb{T})$ as $n \rightarrow \infty$. By continuity of the Fourier transform map we obtain $\widehat{\chi_{A} s_{n}} \rightarrow \widehat{\chi_{A} f}$ in $\ell^{p^{\prime}}(\mathbb{Z})$ as $n \rightarrow \infty$. It is routine to check that

$$
\int_{B} h d m_{p}=\widehat{\chi_{B} h}, \quad B \in \mathcal{B}(\mathbb{T})
$$

for every $\mathcal{B}(\mathbb{T})$-simple function h on \mathbb{T}. Hence, $\int_{A} s_{n} d m_{p} \rightarrow \widehat{\chi_{A} f}$ in $\ell^{p^{\prime}}(\mathbb{Z})$ as $n \rightarrow \infty$. According to [Le2, Theorem 2.4] the function $f \in L^{1}\left(m_{p}\right)$ and (2.10) holds.

To establish (2.11), let $f \in L^{p}(\mathbb{T})$. According to (2.7) and (2.10) we have

$$
\|f\|_{L^{1}\left(m_{p}\right)} \leq 4 \sup _{A \in \mathcal{B}(\mathbb{T})}\left\|\widehat{\chi_{A} f}\right\|_{p^{\prime}}
$$

By the Hausdorff-Young inequality

$$
\left\|\widehat{\chi_{A} f}\right\|_{p^{\prime}} \leq\left\|\chi_{A} f\right\|_{p} \leq\|f\|_{p}, \quad A \in \mathcal{B}(\mathbb{T})
$$

Hence, (2.11) holds.
Corollary 2.4. Let $1 \leq p \leq 2$. Then, for every $f \in L^{1}\left(m_{p}\right)$ and $A \in \mathcal{B}(\mathbb{T})$, we have

$$
\begin{equation*}
\int_{A} f d m_{p}=\widehat{\chi_{A} f} \tag{2.12}
\end{equation*}
$$

In particular, the integration map $I_{m_{p}}$ is a continuous extension of F from $L^{p}(\mathbb{T})$ to $L^{1}\left(m_{p}\right)$, still with values in $\ell^{p^{\prime}}(\mathbb{Z})$.
Proof. Fix $f \in L^{1}\left(m_{p}\right)$. Choose simple functions $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ with $s_{n} \rightarrow f$ in $L^{1}\left(m_{p}\right)$ as $n \rightarrow \infty$. By continuity of the integration map $I_{m_{p}}: L^{1}\left(m_{p}\right) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ and (2.10) we have, for $A \in \mathcal{B}(\mathbb{T})$,

$$
\lim _{n \rightarrow \infty} \widehat{\chi_{A} S_{n}}=\lim _{n \rightarrow \infty} \int_{A} s_{n} d m_{p}=\int_{A} f d m_{p}
$$

with convergence in $\ell^{p^{\prime}}(\mathbb{Z}) \hookrightarrow \ell^{\infty}(\mathbb{Z})$. On the other hand, (2.9) implies that $\chi_{A} s_{n} \rightarrow \chi_{A} f$ in $L^{1}(\mathbb{T})$ as $n \rightarrow \infty$ and so the continuity of $F: L^{1}(\mathbb{T}) \rightarrow \ell^{\infty}(\mathbb{Z})$ yields, for $A \in \mathcal{B}(\mathbb{T})$, that

$$
\lim _{n \rightarrow \infty} \widehat{\chi_{A} S_{n}}=\widehat{\chi_{A} f}
$$

with convergence in $\ell^{\infty}(\mathbb{Z})$. By uniqueness of Fourier transforms we see that (2.12) holds.

Corollary 2.5. Let $1 \leq p \leq 2$. Then the vector measure $m_{p}: \mathcal{B}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ does not have relatively compact range.

Proof. The closed convex hull of $m_{p}(\mathcal{B}(\mathbb{T}))$ is given by

$$
C:=\overline{\operatorname{co}} m_{p}(\mathcal{B}(\mathbb{T}))=\left\{\int_{\mathbb{T}} f d m_{p}: 0 \leq f \leq 1, f \in L^{\infty}\left(m_{p}\right)\right\}
$$

[DU, p.263]. Moreover, according to (2.12) each character e_{n}, for $n \in \mathbb{Z}$, satisfies

$$
\chi_{\{n\}}=F\left(e_{n}\right)=\int_{\mathbb{T}} e_{n} d m_{p} \in C+C+i C+i C .
$$

So, if $m_{p}(\mathcal{B})$ is relatively compact in $\ell^{p^{\prime}}(\mathbb{Z})$, then so is $C+C+i C+i C$ and hence, also $\left\{\chi_{\{n\}}: n \in \mathbb{Z}\right\}$. But, this is surely not the case as $\left\|\chi_{\{n\}}-\chi_{\{k\}}\right\|_{p^{\prime}}=2^{1 / p^{\prime}}$ for $n \neq k$.

Proof of Theorem 1.1 We show that $\mathbf{F}^{p}(\mathbb{T}):=L^{1}\left(m_{p}\right)$, equipped with the norm $\|\cdot\|_{\mathbf{F}^{p}(\mathbb{T})}:=$ $\|\cdot\|_{L^{1}\left(m_{p}\right)}$, has all the required features. As already noted, $L^{1}\left(m_{p}\right)$ is a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), d t)$ with σ-order continuous norm. Part (i) of Theorem 1.1 is immediate from Lemma 2.3 and Corollary 2.4 and part (iii) is clear from Lemma 2.1 (iii).

To establish (ii), let Z be any Banach function space over ($\mathbb{T}, \mathcal{B}(\mathbb{T}), d t)$ with σ-order continuous norm such that $L^{p}(\mathbb{T}) \subset Z$ continuously and F has a continuous linear extension $T: Z \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$. Let $0 \leq f \in Z$. Choose simple functions $\left\{s_{n}\right\}_{n \in \mathbb{N}}$ such that $0 \leq s_{n} \uparrow f$ pointwise a.e. on \mathbb{T} and note that $\left\{s_{n}\right\}_{n \in \mathbb{N}} \subset L^{p}(\mathbb{T}) \subset Z$. Fix $A \in \mathcal{B}(\mathbb{T})$. Since Z has σ-order continuous norm, it follows that $T\left(s_{n} \chi_{A}\right) \rightarrow T\left(f \chi_{A}\right)$ in $\ell^{p^{\prime}}(\mathbb{Z})$ as $n \rightarrow \infty$. But, for $n \in \mathbb{N}$ we have

$$
\begin{equation*}
T\left(s_{n} \chi_{A}\right)=F\left(s_{n} \chi_{A}\right)=\int_{A} s_{n} d m_{p} \tag{2.13}
\end{equation*}
$$

and so $\int_{A} s_{n} d m_{p} \rightarrow T\left(f \chi_{A}\right)$ in $\ell^{p^{\prime}}(\mathbb{Z})$ as $n \rightarrow \infty$. Again by [Le2, Theorem 2.4] it follows that $f \in L^{1}\left(m_{p}\right)$ and

$$
\begin{equation*}
\int_{A} f d m_{p}=\lim _{n \rightarrow \infty} \int_{A} s_{n} d m_{p}=T\left(f \chi_{A}\right) \tag{2.14}
\end{equation*}
$$

The case for general $f \in Z$ follows by considering the positive and negative parts of both $\operatorname{Re}(f)$ and $\operatorname{Im}(f)$, all of which belong to Z. So, $Z \subset L^{1}\left(m_{p}\right)$. It remains to verify the continuity of this inclusion. Given $f \in Z$, it follows from (2.7) and (2.14) that

$$
\|f\|_{L^{1}\left(m_{p}\right)} \leq 4 \sup _{A \in \mathcal{B}(\mathbb{T})}\left\|\int_{A} f d m_{p}\right\|_{p^{\prime}}=4 \sup _{A \in \mathcal{B}(\mathbb{T})}\left\|T\left(\chi_{A} f\right)\right\|_{p^{\prime}}
$$

By continuity, $\left\|T\left(\chi_{A} f\right)\right\|_{p^{\prime}} \leq\|T\|\left\|f \chi_{A}\right\|_{Z}$ and, since the norm on Z is a lattice norm and $\left|f \chi_{A}\right| \leq|f|$, also $\left\|f \chi_{A}\right\|_{Z} \leq\|f\|_{Z}$ for each $A \in \mathcal{B}(\mathbb{T})$. It follows that

$$
\|f\|_{L^{1}\left(m_{p}\right)} \leq 4\|T\|\|f\|_{Z}
$$

This completes the proof of Theorem 1.1.

Remark 2.6. We can now justify the claims made in Remark 1.3. Since $L^{1}\left(m_{1}\right)=\mathbf{F}^{1}(\mathbb{T})$ and also $L^{1}\left(m_{1}\right)=L^{1}(\mathbb{T})$, by Lemma 2.1 (iii) and Lemma 2.3 (with equivalent norms), it follows that $F^{1}(\mathbb{T})=L^{1}(\mathbb{T})$.

For $p=2$, the Plancherel theorem and (2.11) yield, for each $f \in L^{2}(\mathbb{T})$, that

$$
\|f\|_{L^{1}\left(m_{2}\right)} \leq 4\|f\|_{2}=4\|\hat{f}\|_{2} \leq 4 \sup _{A \in \mathcal{B}(\mathbb{T})}\left\|\widehat{\chi_{A} f}\right\|_{2}
$$

Then apply (2.7) and (2.12) to conclude, for $f \in L^{2}(\mathbb{T})$, that

$$
\|f\|_{L^{1}\left(m_{2}\right)} \leq 4\|f\|_{2} \leq 4\|f\|_{L^{1}\left(m_{2}\right)}
$$

Moreover, by Lemma 2.3, $L^{2}(\mathbb{T})$ is contained and dense in $L^{1}\left(m_{2}\right)$. It follows that $L^{1}\left(m_{2}\right)=$ $L^{2}(\mathbb{T})$.

3 Proof of Theorem 1.2

To describe the space $L^{1}(m)$, for a general vector measure m, is rather difficult. However, for the vector measures m_{p}, with $1 \leq p \leq 2$, it will be shown in this section that this is possible.

According to (1.2), $V^{p}(\mathbb{T})=\left\{h \in L^{p^{\prime}}(\mathbb{T}): h=\check{\phi}\right.$ for some $\left.\phi \in \ell^{p}(\mathbb{Z})\right\}$. Since $1 \leq p \leq 2$, we have $\ell^{p}(\mathbb{Z}) \subset \ell^{2}(\mathbb{Z})$ and so the inverse Fourier transform $\check{\phi} \in L^{2}(\mathbb{T})$ for $\phi \in \ell^{p}(\mathbb{Z})$. For $1 \leq p<2$ the containment

$$
\begin{equation*}
V^{p}(\mathbb{T}) \subset L^{p^{\prime}}(\mathbb{T}) \tag{3.1}
\end{equation*}
$$

is always proper; see $[\mathrm{Ka}, \mathrm{p} .101]$ for $1<p<2$. For $p=1$, note that $V^{1}(\mathbb{T})=\{\hat{\phi}: \phi \in$ $\left.\ell^{1}(\mathbb{Z})\right\} \subset C(\mathbb{T})$ with a proper containment, [Ka, p.31].

Lemma 3.1. Let $1 \leq p \leq 2$ and $f \in L^{0}(\mathbb{T})$. Then $f \in L^{1}\left(m_{p}\right)$ if and only if

$$
\begin{equation*}
\int_{\mathbb{T}}|f||h| d t<\infty, \quad h \in V^{p}(\mathbb{T}) \tag{3.2}
\end{equation*}
$$

Proof. Suppose $f \in L^{1}\left(m_{p}\right)$. If $h=\check{\phi} \in V^{p}(\mathbb{T})$ for some $\phi \in \ell^{p}(\mathbb{Z})$, then (2.3) implies that $\int_{\mathbb{T}}|f| d\left|\left\langle m_{p}, \phi\right\rangle\right|<\infty$. Since $L^{p^{\prime}}(\mathbb{T}) \subset L^{2}(\mathbb{T})$, we can apply Parseval's formula to conclude, for each $A \in \mathcal{B}(\mathbb{T})$, that

$$
\left\langle m_{p}(A), \phi\right\rangle=\left\langle\widehat{\chi_{A}}, \hat{h}\right\rangle=\left\langle\chi_{A}, \tilde{h}\right\rangle=\int_{A} \tilde{h} d t
$$

where $\tilde{h}(t)=h(-t)$ is the reflection of h. Accordingly, the variation measure $\left|\left\langle m_{p}, \phi\right\rangle\right|(A)=$ $\int_{A}|\tilde{h}| d t$ for $A \in \mathcal{B}(\mathbb{T})$ and therefore

$$
\begin{equation*}
\int_{\mathbb{T}}|f||\tilde{h}| d t=\int_{\mathbb{T}}|f| d\left|\left\langle m_{p}, \phi\right\rangle\right|<\infty . \tag{3.3}
\end{equation*}
$$

Since $V^{p}(\mathbb{T})$ is invariant under formation of reflections, (3.2) holds. Conversely, let $1<p \leq 2$ and suppose that $f \in L^{0}(\mathbb{T})$ satisfies (3.2). Given any $\phi \in \ell^{p}(\mathbb{Z})$ there exists $h \in L^{p^{\prime}}(\mathbb{T})$ such that $\hat{h}=\phi$, [Ka, IV Theorem 2.2]. Then $h \in V^{p}(\mathbb{T})$ and hence, also $\tilde{h} \in V^{p}(\mathbb{T})$. So, $\int_{\mathbb{T}}|f||\tilde{h}| d t<\infty$. Moreover, the same calculation as above shows that the equality in (3.3) holds and hence, is finite. So, f satisfies (2.3). Since the reflexive space $\ell^{p^{\prime}}(\mathbb{Z})$ cannot contain an isomorphic copy of the Banach space c_{0}, this alone suffices to ensure that $f \in L^{1}\left(m_{p}\right)$, [Le, Theorem 5.1]. For $p=1$, note that the constant function $1=\check{\chi}_{\{0\}}$ belongs to $V^{1}(\mathbb{T})$ and so $\int_{\mathbb{T}}|f| d t=\int_{\mathbb{T}}|f| \check{\chi}_{\{0\}} d t<\infty$, that is, $f \in L^{1}(\mathbb{T})=L^{1}\left(m_{1}\right)$; see Remark 2.6.

Fix $1<p \leq 2$ and let $f \in \Phi^{p}(\mathbb{T})$; see (1.5). That is, $f \in L^{1}(\mathbb{T})$ has the property that $\widehat{\chi_{A} f} \in \ell^{p^{\prime}}(\mathbb{Z})$ for every $A \in \mathcal{B}(\mathbb{T})$. Then the set function $\nu_{f}: \mathcal{B}(\mathbb{T}) \rightarrow \ell^{p^{\prime}}(\mathbb{Z})$ defined by

$$
\begin{equation*}
A \mapsto \nu_{f}(A):=\widehat{\chi_{A} f}, \quad A \in \mathcal{B}(\mathbb{T}), \tag{3.4}
\end{equation*}
$$

is surely finitely additive. Actually more is true.
Lemma 3.2. Let $1<p \leq 2$. Then, for each $f \in \Phi^{p}(\mathbb{T})$, the finitely additive set function ν_{f} as given by (3.4) is σ-additive, that is, it is an $\ell^{p^{\prime}}(\mathbb{Z})$-valued vector measure on $\mathcal{B}(\mathbb{T})$.

Proof. Let Γ denote the linear span of $\chi_{\{m\}}$, for $m \in \mathbb{Z}$, and let $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ be a pairwise disjoint sequence of sets in $\mathcal{B}(\mathbb{T})$. Let $\left\{A_{n_{k}}\right\}_{k \in \mathbb{N}}$ be any subsequence of $\left\{A_{n}\right\}_{n \in \mathbb{N}}$. Then, with $B=\cup_{k \in \mathbb{N}} A_{n_{k}}$, the dominated convergence theorem gives, for each $m \in \mathbb{Z}$, that

$$
\begin{equation*}
\sum_{k \in \mathbb{N}}\left\langle\nu_{f}\left(A_{n_{k}}\right), \chi_{\{m\}}\right\rangle=\sum_{k \in \mathbb{N}} \int_{\mathbb{T}} f(t) \chi_{A_{n_{k}}}(t) e^{-i m t} d t=\widehat{f \chi_{B}}(m)=\sum_{k \in \mathbb{N}}\left\langle\nu_{f}\left(\cup_{k \in \mathbb{N}} A_{n_{k}}\right), \chi_{\{m\}}\right\rangle . \tag{3.5}
\end{equation*}
$$

So, every subseries of $\sum_{k \in \mathbb{N}} \nu_{f}\left(A_{n}\right)$ is weakly Γ-convergent. Since the reflexive space $\ell^{p^{\prime}}(\mathbb{Z})$ cannot contain an isomorphic copy of ℓ^{∞} and Γ is a total subset of $\left(\ell^{p^{\prime}}(\mathbb{Z})\right)^{\prime}=\ell^{p}(\mathbb{Z})$, it follows from the strengthened version of the Orlicz-Pettis theorem, [DU, p.23], that $\nu_{f}\left(\cup_{n \in \mathbb{N}} A_{n}\right)$ is unconditionally norm convergent (to $\nu_{f}(B)$). Accordingly, ν_{f} is σ-additive.

Proposition 3.3. Let $1<p \leq 2$. Then $L^{1}\left(m_{p}\right)=\Phi^{p}(\mathbb{T})$.
Proof. By Corollary 2.4 and (1.5) it is clear that $L^{1}\left(m_{p}\right) \subset \Phi^{p}(\mathbb{T})$. Conversely, suppose that $f \in \Phi^{p}(\mathbb{T})$. Given $h \in V^{p}(\mathbb{T})$, there is $\phi \in \ell^{p}(\mathbb{Z})$ such that $\hat{h}=\phi$ and

$$
\begin{equation*}
\left\langle m_{p}, \phi\right\rangle(A)=\int_{A} \tilde{h} d t, \quad A \in \mathcal{B}(\mathbb{T}) \tag{3.6}
\end{equation*}
$$

see the proof of Lemma 3.1. According to Lemma 3.2,

$$
A \mapsto\left\langle\nu_{f}(A), \phi\right\rangle=\left\langle\widehat{f \chi_{A}}, \hat{h}\right\rangle, \quad A \in \mathcal{B}(\mathbb{T}),
$$

is σ-additive. Define $A_{n}=|f|^{-1}([0, n])$ for $n \in \mathbb{N}$, in which case $A \cap A_{n} \uparrow A$ for each $A \in \mathcal{B}(\mathbb{T})$. By σ-additivity of $\left\langle\nu_{f}(A), \phi\right\rangle$ we have

$$
\left\langle\nu_{f}(A), \phi\right\rangle=\lim _{n \rightarrow \infty}\left\langle\widehat{f \chi_{A \cap A_{n}}}, \hat{h}\right\rangle .
$$

Since each function $f \chi_{A \cap A_{n}}$ is bounded and $h \in L^{2}(\mathbb{T})$, Parseval's formula gives

$$
\left\langle\nu_{f}(A), \phi\right\rangle=\lim _{n \rightarrow \infty} \int_{\mathbb{T}} f \chi_{A \cap A_{n}} \tilde{h} d t=\lim _{n \rightarrow \infty} \int_{A} f_{n} d \mu
$$

where the functions $f_{n}=f \chi_{A_{n}} \in L^{\infty}(\mathbb{T})$ converge pointwise to f on \mathbb{T} and $d \mu=\tilde{h} d t$ is a complex measure. By [Le2, Lemma 2.3] we conclude that f is μ-integrable (i.e. $f \tilde{h} \in L^{1}(\mathbb{T})$) and

$$
\int_{A} f \tilde{h} d t=\int_{A} f d \mu=\left\langle\nu_{f}(A), \phi\right\rangle .
$$

So, $f \tilde{h} \in L^{1}(\mathbb{T})$ for all $h \in V^{p}(\mathbb{T})$. Then Lemma 3.1 implies that $f \in L^{1}\left(m_{p}\right)$.
We have an immediate consequence for the spaces $\Gamma^{p}(\mathbb{T})$ as given by (1.6).
Corollary 3.4. For each $1<p \leq 2$ we have $L^{1}\left(m_{p}\right)=\Gamma^{p}(\mathbb{T})$.
Proof. Let $f \in \Gamma^{p}(\mathbb{T})$. Then the operator $S_{f}\left(\right.$ see (1.3)) maps each $h \in L^{\infty}(\mathbb{T})$ into $\ell^{p^{\prime}}(\mathbb{Z})$. In particular, for $h=\chi_{A}$ we have

$$
S_{f}\left(\chi_{A}\right)=\widehat{f \chi_{A}} \in \ell^{p^{\prime}}(\mathbb{Z}), \quad A \in \mathcal{B}(\mathbb{T})
$$

that is, $f \in \Phi^{p}(\mathbb{T})$. By Proposition 3.3 we have $f \in L^{1}\left(m_{p}\right)$.
Conversely, suppose that $f \in L^{1}\left(m_{p}\right)$. Given $h \in L^{\infty}(\mathbb{T})$, we have a.e. $|h| \leq\|h\|_{\infty} \chi_{\mathbb{T}}$. Since the Lebesgue null sets and m_{p}-null sets coincide, we also have

$$
\begin{equation*}
|h| \leq\|h\|_{\infty} \chi_{\mathbb{T}}, \quad m_{p}-\text { a.e. } \tag{3.7}
\end{equation*}
$$

In particular, $h \in L^{\infty}\left(m_{p}\right)$ and so $h f \in L^{1}\left(m_{p}\right)$ by the ideal property of the Banach function space $L^{1}\left(m_{p}\right)$. Then Corollary 2.4 can be applied to yield $S_{f}(h)=\widehat{f h}=\int_{\mathbb{T}} f h d m_{p} \in \ell^{p^{\prime}}(\mathbb{Z})$ and hence, that

$$
\left\|S_{f}(h)\right\|_{p^{\prime}}=\left\|\int_{\mathbb{T}} f h d m_{p}\right\|_{p^{\prime}} \leq\|f h\|_{L^{1}\left(m_{p}\right)} .
$$

Since the norm of $L^{1}\left(m_{p}\right)$ is a lattice norm, by (3.7) we get $\|f h\|_{L^{1}\left(m_{p}\right)} \leq\|h\|_{\infty}\|f\|_{L^{1}(\mathbb{T})}$. Accordingly,

$$
\left\|S_{f}(h)\right\|_{p^{\prime}} \leq\|h\|_{\infty}\|f\|_{L^{1}\left(m_{p}\right)} .
$$

This shows that S_{f} is a bounded operator from $L^{\infty}(\mathbb{T})$ to $\ell^{p^{\prime}}(\mathbb{Z})$ with $\left\|S_{f}\right\|_{\infty, p^{\prime}} \leq\|f\|_{L^{1}\left(m_{p}\right)}$. In particular, $f \in \Gamma^{p}(\mathbb{T})$.

Proof of Theorem 1.2. Since $\mathbf{F}^{p}(\mathbb{T})=L^{1}\left(m_{p}\right)$, it follows from Lemma 3.1 that $\mathbf{F}^{p}(\mathbb{T})=$ $\Delta^{p}(\mathbb{T})$, for all $1 \leq p \leq 2$. It is clear from (1.5) and (1.6) that $\Phi^{1}(\mathbb{T})=\Gamma^{1}(\mathbb{T})=L^{1}(\mathbb{T})$ and hence, $\Phi^{1}(\mathbb{T})=\Gamma^{1}(\mathbb{T})=\mathbf{F}^{1}(\mathbb{T})$ by Remark 2.6. For $1<p \leq 2$, it follows from Proposition 3.3 that $\mathbf{F}^{p}(\mathbb{T})=\Phi^{p}(\mathbb{T})$ and from Corollary 3.4 that $\mathbf{F}^{p}(\mathbb{T})=\Gamma^{p}(\mathbb{T})$. Moreover, by (2.7) and Corollary 2.4 we have

$$
\|f\|_{L^{1}\left(m_{p}\right)} \leq 4 \sup _{A \in \mathcal{B}(\mathbb{T})}\left\|\int_{\mathbb{T}} \chi_{A} f d m_{p}\right\|_{p^{\prime}}=4 \sup _{A \in \mathcal{B}(\mathbb{T})}\left\|S_{f}\left(\chi_{A}\right)\right\|_{p^{\prime}} \leq 4\left\|S_{f}\right\|_{\infty, p^{\prime}}
$$

Accordingly, for $f \in L^{1}\left(m_{p}\right)=\Gamma^{p}(\mathbb{T})$ the norms $\|f\|_{L^{1}\left(m_{p}\right)}$ and $\left\|S_{f}\right\|_{\infty, p^{\prime}}$ are equivalent.
In the remainder of this section we consider some properties of the optimal lattice domain $\mathbf{F}^{p}(\mathbb{T})=L^{1}\left(m_{p}\right)$.

Fix $1<p<2$. The associate space of the Banach function space $\mathbf{F}^{p}(\mathbb{T})$ consists of all $h \in L^{0}(\mathbb{T})$ satisfying

$$
\begin{equation*}
\int_{\mathbb{T}}|f h| d t<\infty, \quad f \in \mathbf{F}^{p}(\mathbb{T}) \tag{3.8}
\end{equation*}
$$

equipped with the norm $\sup \left\{\int_{\mathbb{T}}|f h| d t:\|f\|_{\mathbf{F}^{p}(\mathbb{T})}=1\right\}$, [Za, Ch.15, Sect. 69]. Since $\mathbf{F}^{p}(\mathbb{T})$ has σ-order continuous norm, the Banach space dual of $\mathbf{F}^{p}(\mathbb{T})$ coincides with its associate space, [Za, p.480]. Moreover, $\left(\mathbf{F}^{p}(\mathbb{T})\right)^{\prime}$ is again a Banach function space in $L^{0}(\mathbb{T})$, [$\left.\mathrm{Za}, \mathrm{p} .457\right]$. In particular, it is an ideal in $L^{0}(\mathbb{T})$. As noted in the proof of Lemma 3.1, a function $f \in L^{0}(\mathbb{T})$ belongs to $L^{1}\left(m_{p}\right)$ if and only if it satisfies (2.3). This implies that $L^{1}\left(m_{p}\right)=\mathbf{F}^{p}(\mathbb{T})$ is weakly sequentially complete, has the σ-Fatou property (i.e. $0 \leq f_{n} \uparrow f$ with $\left\{f_{n}\right\} \subset \mathbf{F}^{p}(\mathbb{T})$ a norm bounded sequence implies that $\left.\left\|f_{n}\right\|_{\mathbf{F}^{p}(\mathbb{T})} \uparrow\|f\|_{\mathbf{F}^{p}(\mathbb{T})}\right)$ and that $L^{1}\left(m_{p}\right)$ coincides with its second associate space, [CR4, Prop. 2.1, 2.3, 2.4].

Note that the operator norm of $S_{f} \in \mathcal{L}\left(L^{\infty}(\mathbb{T}), \ell^{p^{\prime}}(\mathbb{Z})\right)$, for $f \in \mathbf{F}^{p}(\mathbb{T})$, agrees with the norm of the dual operator

$$
S_{f}^{*}: \ell^{p}(\mathbb{Z}) \ni\left\{a_{n}\right\} \mapsto f(x) \sum_{n \in \mathbb{Z}} a_{n} e^{-i n x} \in L^{1}(\mathbb{T}) \subset L^{\infty}(\mathbb{T})^{\prime}
$$

Since $\ell^{p}(\mathbb{Z})$ is modulation invariant, i.e. $\left\{a_{n}\right\}$ and $\left\{e^{i n \alpha} a_{n}\right\}$ have the same norm, it is clear that $\mathbf{F}^{p}(\mathbb{T})$ is translation invariant. Moreover, it is easy to check that the translation operators $\tau_{t} f(x)=f(x-t)$ are continuous in $\mathbf{F}^{p}(\mathbb{T})$ and that τ_{t} converges to the identity for the strong operator topology as $t \rightarrow 0$. Accordingly, $\mathbf{F}^{p}(\mathbb{T})$ is a homogeneous Banach space, [Ka].

If $h \in V^{p}(\mathbb{T})$, then (3.8) holds because of (1.4) and Theorem 1.2. From the natural inclusion $L^{p}(\mathbb{T}) \subset \mathbf{F}^{p}(\mathbb{T})$ we then conclude that

$$
\begin{equation*}
V^{p}(\mathbb{T}) \subset\left(\mathbf{F}^{p}(\mathbb{T})\right)^{\prime} \subset L^{p^{\prime}}(\mathbb{T}) \tag{3.9}
\end{equation*}
$$

Actually, since $\chi_{\mathbb{T}} \in V^{p}(\mathbb{T})$ and $\left(\mathbf{F}^{p}(\mathbb{T})\right)^{\prime}$ is an ideal, we see that also $L^{\infty}(\mathbb{T}) \subset\left(\mathbf{F}^{p}(\mathbb{T})\right)^{\prime}$. It follows easily from (3.8) that $\left(\mathbf{F}^{p}(\mathbb{T})\right)^{\prime}$ is translation invariant. According to [Ka, IV Theorem 2.4], there exists $h \in C(\mathbb{T})$ such that $h \notin \ell^{p}(\mathbb{Z})$. If the first containment in (3.9) was an equality,
then $V^{p}(\mathbb{T})$ would be an ideal and so the inequality $|h| \leq\|h\|_{\infty} \chi_{\mathbb{T}}$ would give that $h \in V^{p}(\mathbb{T})$, which is not the case. Of course, since $V^{p}(\mathbb{T})$ contains the trigonometric polynomials, it surely separates the points of $\mathbf{F}^{p}(\mathbb{T})$. If the second containment in (3.9) was an equality, then $L^{p}(\mathbb{T})$ would coincide with the second associate space of $L^{1}\left(m_{p}\right)$ which, as noted above, equals $L^{1}\left(m_{p}\right)=\mathbf{F}^{p}(\mathbb{T})$. This contradicts Theorem 1.4. So, both containments in (3.9) are proper.

From the viewpoint of analysis, the weak sequential completeness of $\mathbf{F}^{p}(\mathbb{T})$ is difficult to use in practice since $\left(\mathbf{F}^{p}(\mathbb{T})\right)^{\prime}$ is not explicitly known. However, there is available a good substitute in this regard. Indeed, Theorem 1.1 (iii) and the σ-Fatou property of $\mathbf{F}^{p}(\mathbb{T})$ show that $\mathbf{F}^{p}(\mathbb{T})$ is also a Banach function space in the more restricted sense of [BS]. Since $L^{\infty}(\mathbb{T})$ is an order ideal of $\left.\left(\mathbf{F}^{p}(\mathbb{T})\right)\right)^{\prime}$ containing the simple functions, it follows from [BS, Ch.1, Theorem 5.2] that $\mathbf{F}^{p}(\mathbb{T})$ is also sequentially $\sigma\left(\mathbf{F}^{p}(\mathbb{T}), L^{\infty}(\mathbb{T})\right.$)-complete.

4 Proof of Theorem 1.4

The proof of Theorem 1.4, for $p^{\prime}>2$ an even integer, is somewhat easier because in this case we can rely on the Hardy-Littlewood majorant property of the spaces $L^{p}(\mathbb{T})$, [HL]. To see this and to get an idea of what type of functions are contained in $\mathbf{F}^{p}(\mathbb{T})$ we establish, e.g. for $p=4 / 3$, the following
Lemma 4.1. If $f \in L^{1}(\mathbb{T})$ is non-negative and $\hat{f} \in \ell^{4}(\mathbb{Z})$, then $f \in \mathbf{F}^{4 / 3}(\mathbb{T})$ and

$$
\|f\|_{\mathbf{F}^{4 / 3}(\mathbb{T})} \leq 4\|\hat{f}\|_{\ell^{4}(\mathbb{Z})}
$$

Proof. This follows from Parsevals's identity as follows. For $g \in L^{\infty}(\mathbb{T})$ we have

$$
\|\widehat{f g}\|_{4}^{4}=\sum_{n \in \mathbb{Z}}|\widehat{f g}(n) \widehat{f g}(n)|^{2}=\int_{\mathbb{T}}|f g * f g|^{2} d t \leq\|g\|_{\infty}^{4} \int_{\mathbb{T}}|f * f|^{2} d t=\|g\|_{\infty}^{4}\|\hat{f}\|_{4}^{4}
$$

that is, $\left\|S_{f}\right\|_{\infty, 4} \leq\|\hat{f}\|_{4}$. Hence, $\|f\|_{\mathbf{F}^{4 / 3}(\mathbb{T})} \leq 4\left\|S_{f}\right\|_{\infty, 4} \leq 4\|\hat{f}\|_{4}$.
What we have said so far applies also for higher dimensional tori $\mathbb{T}^{d} \cong(-\pi, \pi]^{d}$. In particular, we may apply the previous Lemma to \mathbb{T}^{2} to see that $L^{4 / 3}\left(\mathbb{T}^{2}\right)$ is a proper subspace of $\mathbf{F}^{4 / 3}\left(\mathbb{T}^{2}\right)$. In fact, for $\alpha>0$, the Fourier transform of the non-negative function $M_{\alpha}: x \mapsto$ $\frac{1}{\Gamma(\alpha)}\left(1-|x|^{2}\right)_{+}^{\alpha-1}$, defined on $(-\pi, \pi]^{2}$, decays asymptotically as $|n|^{-\frac{1}{2}-\alpha}$ for $n \rightarrow \infty$ in \mathbb{Z}^{2}. Therefore, $M_{\alpha} \in \mathbf{F}^{4 / 3}\left(\mathbb{T}^{2}\right)$ for all $\alpha>0$, whereas M_{α} is obviously not an $L^{4 / 3}\left(\mathbb{T}^{2}\right)$-function for $\alpha \leq 1 / 4$.

We note that for $\alpha \rightarrow 0$ the functions M_{α}, considered as distributions on \mathbb{T}^{2}, converge to arclength measure $d \sigma$ on the circle S^{1}. Hence, for $\alpha \rightarrow 0$, the L^{1}-function M_{α} does not converge in the $\mathbf{F}^{4 / 3}\left(\mathbb{T}^{2}\right)$-norm. However, it was shown by E.M. Stein (see $[\mathrm{Fe}],[\mathrm{St}]$) that the operator

$$
S_{\sigma}(f)=\widehat{f d \sigma}, \quad f \in C^{\infty}\left(S^{1}\right)
$$

maps $L^{2}\left(S^{1}, d \sigma\right)$ and hence, also $L^{\infty}\left(S^{1}, d \sigma\right)$, boundedly into $L^{q}\left(\mathbb{R}^{2}\right)$ for some $q>4$. The fact that S_{σ} maps $L^{\infty}\left(S^{1}, d \sigma\right)$ into $L^{q}\left(\mathbb{R}^{2}\right)$ for all $q>4$ was also shown in [Fe]; see also [St]. An easy argument shows that we may replace $L^{q}\left(\mathbb{R}^{2}\right)$ with $\ell^{q}\left(\mathbb{Z}^{2}\right)$.

This motivates us to use Fourier restriction theory to establish that the inclusion $L^{p}(\mathbb{T}) \subset$ $\mathbf{F}^{p}(\mathbb{T})$ is proper. For the proof of Theorem 1.4 we will employ the following result for Salem measures, $[\mathrm{Mo}, \mathrm{Mo} 2, \mathrm{Sa}]$.

Proposition 4.2. There is a non-negative measure μ on \mathbb{R} with the following properties.
(i) $E=\operatorname{supp}(\mu)$ is a compact subset of $[-1,1] \subset(-\pi, \pi]$ of Hausdorff dimension $\alpha \in(0,1)$.
(ii) There is $C>0$ such that, for each interval $I \subset \mathbb{R}$, we have

$$
\mu(I) \leq C|I|^{\alpha} .
$$

(iii) For each $\varepsilon>0$ there is $C_{\varepsilon}>0$ such that the Fourier transform of μ (on \mathbb{R}) satisfies the asymptotic bound

$$
|\widehat{\mu}(\xi)| \leq C_{\varepsilon}|\xi|^{-\frac{\alpha}{2}+\varepsilon}, \quad|\xi| \rightarrow \infty .
$$

(iv) The following analogue of the Stein-Tomas restriction inequality holds:

$$
\begin{equation*}
\int|\hat{f}(y)|^{2} d \mu(y) \leq C\|f\|_{L^{p}(\mathbb{R})}^{2}, \quad f \in L^{p}(\mathbb{R}) \tag{4.1}
\end{equation*}
$$

for $1 \leq p<p_{\varepsilon}(\alpha)$, where $p_{\varepsilon}(\alpha) \rightarrow \frac{2(2-\alpha)}{4-3 \alpha}$ as $\varepsilon \rightarrow 0^{+}$.
We will need to transfer inequality (4.1) to the torus. For a sequence $\left\{f_{m}\right\} \in \ell^{p}(\mathbb{Z})$ we consider $f(x)=\sum_{m \in \mathbb{Z}} f_{m} \chi_{Q}(2 \pi m+x)$, where $Q=(-\pi, \pi]$ is a fundamental interval for the lattice $2 \pi \mathbb{Z}$. Obviously we have $f \in L^{p}(\mathbb{R})$. Now apply (4.1) to f. Since $\hat{f}(\xi)=\widehat{\chi_{Q}}(\xi) \sum_{m \in \mathbb{Z}} f_{m} e^{i m \xi}=: \widehat{\chi_{Q}}(\xi) F(\xi)$ and $\left|\chi_{Q}(\xi)\right|>1 / 2$ on E, we obtain for the periodic function F the inequality

$$
\begin{equation*}
\int|F|^{2} d \mu \leq C\left(\sum_{m \in \mathbb{Z}}\left|f_{m}\right|^{p}\right)^{2 / p} \tag{4.2}
\end{equation*}
$$

Hence, for each $g \in L^{\infty}(E, d \mu)$, we get by the dual inequality of (4.2) that

$$
\left(\sum_{m \in \mathbb{Z}}|\widehat{g d \mu}(m)|^{p^{\prime}}\right)^{\frac{1}{p^{\prime}}} \leq C\|g\|_{L^{2}(E, d \mu)} \leq C\|g\|_{L^{\infty}(E, d \mu)}
$$

Denote by μ_{t} the translation of μ by $t \in \mathbb{R}$, let I be an open interval centred at 0 of length $1 / 10$, let $\phi \in C^{\infty}(I)$ be non-negative with $\phi(0)=1=\widehat{\phi}(0)$ and, for $0<\beta<1$, define $r_{\beta}(t)=|t|^{-\beta} \phi(t)$. Now define the non-negative function

$$
I_{\beta}(y)=\int_{\mathbb{R}} r_{\beta}(t) d \mu_{t}(y)=\left(r_{\beta} * \mu\right)(y), \quad y \in \mathbb{R}
$$

Note that $I_{\beta} \in L^{1}(\mathbb{R})$ and $\operatorname{supp} I_{\beta}$ is a proper subset of Q. Clearly, the left-hand side of (4.1) is translation invariant and so

$$
\int|\hat{f}(y)|^{2} d \mu_{t}(y) \leq C\|f\|_{L^{p}(\mathbb{R})}^{2}, \quad t \in \mathbb{R}
$$

Multiplying by r_{β} and then integrating with respect to t, gives

$$
\int|\hat{f}(y)|^{2} I_{\beta}(y) d y \leq C\|f\|_{L^{p}(\mathbb{R})}^{2}
$$

As above we obtain, for $F(x)=\sum_{m \in \mathbb{Z}} f_{m} e^{i m x}$, that

$$
\begin{equation*}
\int_{Q}|F|^{2} I_{\beta}(y) d y \leq C\left(\sum_{m \in \mathbb{Z}}\left|f_{m}\right|^{p}\right)^{2 / p} \tag{4.3}
\end{equation*}
$$

and therefore, for each $g \in L^{\infty}(\mathbb{T})$, that

$$
\begin{equation*}
\left(\sum_{m \in \mathbb{Z}}\left|\widehat{g I_{\beta}}(m)\right|^{\left.\right|^{\prime}}\right)^{\frac{1}{p^{\prime}}} \leq C\|g\|_{L^{2}\left(Q, I_{\beta}(y) d y\right)} \leq C\|g\|_{L^{\infty}(Q)} \int_{Q} I_{\beta}(y) d y \tag{4.4}
\end{equation*}
$$

That is, $I_{\beta} \in \mathbf{F}^{p}(\mathbb{T})$ for $0<\beta<1$ and $1 \leq p<p_{\varepsilon}(\alpha)$.
Proof of Theorem 1.4. We will show, for an appropriate choice of α and β, that $I_{\beta} \notin L^{p}(Q)$. Note that:

- from Proposition 4.2 (ii) we obtain $I_{\beta} \in L^{\infty}(Q)$ for $\beta<\alpha$ and, of course, $I_{\beta} \in L^{1}(Q)$ for $0<\beta<1$. Therefore, by convexity we get, for $\beta>\alpha$, that

$$
\begin{equation*}
I_{\beta} \in L^{p}(Q), \quad \text { if } p<\frac{1-\alpha}{\beta-\alpha} . \tag{4.5}
\end{equation*}
$$

Below we will see that this condition is essentially sharp.

- Since $\left|\widehat{r_{\beta}}(\xi)\right| \geq c|\xi|^{-(1-\beta)}$ as $|\xi| \rightarrow \infty$, we obtain

$$
\left|\widehat{I_{\beta}}(\xi)\right|=\left|\widehat{\mu}(\xi) \widehat{r_{\beta}}(\xi)\right| \geq c|\widehat{\mu}(\xi)||\xi|^{-(1-\beta)}, \quad|\xi| \rightarrow \infty
$$

Therefore

$$
\int\left|\widehat{I}_{\beta}(\xi)\right|^{2} d \xi \geq c \int|\widehat{\mu}(\xi)|^{2}(1+|\xi|)^{-2(1-\beta)} d \xi \approx I_{t}(d \mu)
$$

where $t=2 \beta-1$ and $I_{t}(d \mu)$ is the t-energy of μ (see [Fa]). From property (iii) in Proposition 4.2 we obtain that $t \leq \operatorname{dim}_{H} E=\alpha$ (see [Fa, p.79]). That is, $\beta \leq \frac{1+\alpha}{2}$ provided $\int_{\mathbb{R}}\left|\widehat{I_{\beta}}(\xi)\right|^{2} d \xi$ is finite.

Suppose now that $\beta_{0}>\alpha$ and $I_{\beta_{0}} \in L^{q_{0}}(Q)$ for $q_{0}:=\frac{1-\alpha+\delta}{\beta_{0}-\alpha}$ and some $\delta>0$. Since $I_{\beta} \in L^{\infty}(Q)$ for $\beta<\alpha$, by convexity we obtain that $I_{\beta} \in L^{2}(\mathbb{R})$ for all $\beta<\frac{1+\alpha}{2}+\frac{\delta}{2}$. Hence, $\widehat{I_{\beta}} \in L^{2}(\mathbb{R})$, that is, the t-energy of μ is finite for all $t=2 \beta-1<\alpha+\delta$. Accordingly, $\delta=0$.

Hence, for a given $p \in(1,2)$ we may choose $\alpha \in(0,1)$ such that $\frac{2(2-\alpha)}{4-3 \alpha}>p$. By choosing $\beta>\alpha$ sufficiently close to 1 we can ensure that $I_{\beta} \notin L^{p}(\mathbb{T})$, but $I_{\beta} \in \mathbf{F}^{p}(\mathbb{T})$.

We conclude with the observation that $L^{r}(\mathbb{T}) \nsubseteq \mathbf{F}^{p}(\mathbb{T})$ for $1 \leq r<p$ and $\mathbf{F}^{p}(\mathbb{T}) \nsubseteq L^{r}(\mathbb{T})$ for $1<r \leq p$. The first statement follows by considering $f(t)=|t|^{-1 / p}$. On the other hand, the above construction ensures, for any $r \in(1, p)$, that the space $\mathbf{F}^{p}(\mathbb{T})$ is not contained in $L^{r}(\mathbb{T})$. This is not surprising, since L^{p}-spaces merely measure a local property, whereas the $\mathbf{F}^{p}(\mathbb{T})$-norm involves not only local properties but also arithmetic properties of a function (e.g.in case of I_{β}, "by lack of a better description" this means, not only are its peaks important but also how they are distributed relative to each other). One may also see this by estimating the $\mathbf{F}^{p}(\mathbb{T})$-norm of $f(m x)$ for $m \in \mathbb{N}$ and $f \in \mathbf{F}^{p}(\mathbb{T})$.

References

[BS] C. Bennett and R. Sharpley, Interpolation of Operators. Academic Press, 1988.
[CR1] G.P. Curbera and W.J. Ricker, Optimal domains for kernel operators via interpolation. Math. Nachr. 244 (2002), 47-67.
[CR2] G.P. Curbera and W.J. Ricker, Optimal domains for the kernel operator associated with Sobolev's inequality. Studia Math. 158 (2003), 131-152 and 170 (2005), 217-218.
[CR3] G.P. Curbera and W.J. Ricker, Compactness properties of Sobolev imbeddings for rearrangement invariant norms. Trans. Amer. Math. Soc., 359 (2007) 1471-1484.
[CR4] G.P. Curbera and W.J. Ricker, Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. (N.S.), 17 (2006), 187-204.
[DU] J. Diestel and J.J. Uhl., Jr., Vector Measures. Math. Surveys 15, AMS, 1977.
[Ed] R.E. Edwards, Fourier Series, A Modern Introduction Vol. 2, Holt, Rinehart and Winston, 1967.
[Fa] K. Falconer, Fractal Geometry. J. Wiley \& Sons, 1990.
[Fe] C. Fefferman, Inequalities for strongly singular convolution operators. Acta Math. 124 (1970), 9-36.
[FNR] A. Fernandez, F. Naranjo, W.J. Ricker, Completeness of L^{1}-spaces for measures with values in complex vector spaces. J. Math. Anal. Appl. 223 (1998), no. 1, 76-87.
[Gu] A. Gulisashvili, Rearrangement-invariant spaces of functions on LCA groups. J. Funct. Anal. 156 (1998), 384-410.
[HL] G.H. Hardy and J.E. Littlewood, Notes on the theory of series (XIX): a problem concerning majorants of Fourier series. Quart. J. Math., 6 (1935), 304-315.
[Ka] Y. Katznelson, An Introduction to Harmonic Analysis, Dover Pub., 1976.
[Le] D.R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16 (1972), 294-307.
[Le2] D.R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157-165.
[Mo] G. Mockenhaupt, Bounds in Lebesgue Spaces of Oscillatory Integral Operators. Habilitationsschrift, Siegen 1996.
[Mo2] G. Mockenhaupt, Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal. 10 (2000), no. 6, 1579-1587.
[OR1] S. Okada and W.J. Ricker, Optimal domains and integral representations of convolution operators in $L^{p}(G)$. Integral Equations Operator Theory, 48(2004), no. 4, 525-546.
[OR2] S. Okada and W.J. Ricker, Optimal domains and integral representations of $L^{p}(G)$ valued convolution operators via measures. Math. Nachr., 280 (2007), 423-436.
[Sa] R. Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension. Ark. Mat., 1 (1950),353-365.
[St] E.M. Stein, Harmonic Analysis. Princeton Univ. Press, 1993.
[St2] E.M. Stein, Some problems in harmonic analysis. Harmonic analysis in Euclidean spaces, Proc. Sympos. Pure Math., XXXV, Part 1, Amer. Math. Soc., 1978, pp. 3-20.
[Za] A.C. Zaanen, Integration. 2nd rev. ed. North-Holland, Amsterdam; Interscience, 1967.
[Zyg] A. Zygmund, Trigonometric Series. Cambridge University Press, 1959.

Math.-Geogr. Fakultät
Katholische Universität Eichstätt-Ingolstadt
D-85072 EIchStÄTt
Germany
email:
gerdm@ku-eichstaett.de
werner.ricker@ku-eichstaett.de

