Optimal extension of the Hausdorff-Young inequality

G. Mockenhaupt and W.J. Ricker

Abstract

Given $1 , we construct a Banach function space <math>\mathbf{F}^p(\mathbb{T})$ with σ -order continuous norm which contains $L^p(\mathbb{T})$ and has the property that the Fourier transform map $F: L^p(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ has a continuous $\ell^{p'}(\mathbb{Z})$ -valued extension to $\mathbf{F}^p(\mathbb{T})$. Moreover, $\mathbf{F}^p(\mathbb{T})$ is maximal with these properties and satisfies $L^p(\mathbb{T}) \subset \mathbf{F}^p(\mathbb{T}) \subset L^1(\mathbb{T})$ with both containments proper. Each $\mathbf{F}^p(\mathbb{T})$ turns out to be a weakly sequentially complete, translation invariant, homogeneous Banach space and consists precisely of those functions $f \in L^1(\mathbb{T})$ such that $\widehat{f\chi_A} \in \ell^{p'}(\mathbb{Z})$ for every Borel set $A \subset \mathbb{T}$. This answers a question of R.E. Edwards posed some 40 years ago.

1 Introduction and main results

It is known that for $1 \leq p \leq 2$ the Fourier transform F maps $L^p(\mathbb{T})$ into $\ell^{p'}(\mathbb{Z})$, where 1/p' + 1/p = 1, and the Hausdorff-Young inequality

$$\|f\|_{p'} \le \|f\|_p, \qquad f \in L^p(\mathbb{T})$$

ensures that F is continuous. Moreover, the Fourier transform is an injective map from distributions $D(\mathbb{T})$ into the space of sequences of polynomial growth. The theme of this note is to address the following question: Is the Hausdorff-Young inequality optimal? That is, keeping the range space $\ell^{p'}(\mathbb{Z})$ fixed, is it possible to continuously extend the Fourier transform operator $F : L^p(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ to a Banach function space $\mathbf{F}^p(\mathbb{T})$, over the probability space $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt)$ (see Section 2 for the definition), which is larger than $L^p(\mathbb{T})$ and in such a way that $\mathbf{F}^p(\mathbb{T})$ is maximal (or optimal) with this property? Moreover, if so, can $\mathbf{F}^p(\mathbb{T})$ be identified in some "concrete" way? That there exist distributions which are not in $L^p(\mathbb{T})$, but whose Fourier transform lies in $\ell^{p'}(\mathbb{Z})$, is known. Here are some examples (see [St, p.339],[Zyg, II, p.102]). For almost all sign changes $\sum_{n\geq 1} \pm n^{-1/2} \cos nx$ is not integrable while its Fourier transform is in all $\ell^{p'}(\mathbb{Z})$ for p' > 2. An even more concrete example is a function with a Riemann singularity of order $0 < \lambda < 2$ at 0, say

$$f_{\lambda}(x) = e^{i/x} x^{-\lambda}, \quad 0 < x < 1$$
 (1.1)

and $f_{\lambda}(x) = 0$ elsewhere in $(-\pi, \pi]$, which has Fourier transform $\hat{f}_{\lambda}(n) = \sqrt{i\pi} e^{2i\sqrt{n}} n^{-3/4+\lambda/2} + O(n^{-1+\lambda/2})$ if $n \to +\infty$ and decays like the power given in the O-term for $n \to -\infty$. Hence,

 \hat{f}_{λ} lies in $\ell^{p'}(\mathbb{Z})$ for certain p' > 2 depending on λ while, for $\lambda > 1$, the function $f_{\lambda} \in L^{0}(\mathbb{T})$ is not integrable at 0. Here, $L^{0}(\mathbb{T})$ denotes the space of all complex-valued $\mathcal{B}(\mathbb{T})$ -measurable (i.e. Borel measurable) functions on \mathbb{T} .

Theorem 1.1. Let $1 \leq p \leq 2$. There exists a Banach function space $\mathbf{F}^p(\mathbb{T}) \subset L^0(\mathbb{T})$ with σ -order continuous norm $\|\cdot\|_{\mathbf{F}^p(\mathbb{T})}$ and having the following properties:

(i) $L^p(\mathbb{T})$ is continuously included in $\mathbf{F}^p(\mathbb{T})$ and the Fourier transform map $F : L^p(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ has an extension to a continuous linear operator from $\mathbf{F}^p(\mathbb{T})$ into $\ell^{p'}(\mathbb{Z})$. More precisely,

$$||f||_{\mathbf{F}^p(\mathbb{T})} \le 4 ||f||_p, \qquad f \in L^p(\mathbb{T}).$$

- (ii) If Z is any Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt)$ with σ -order continuous norm such that $L^p(\mathbb{T})$ is continuously included in Z and F has an extension to a continuous linear operator from Z into $\ell^{p'}(\mathbb{Z})$, then Z is continuously included in $\mathbf{F}^p(\mathbb{T})$.
- (iii) $\mathbf{F}^{p}(\mathbb{T}) \subset L^{1}(\mathbb{T})$ with $||f||_{1} \leq ||f||_{\mathbf{F}^{p}(\mathbb{T})}$. Moreover, the $\ell^{p'}(\mathbb{Z})$ -valued extension of F from $L^{p}(\mathbb{T})$ to $\mathbf{F}^{p}(\mathbb{T})$ is again the map $f \to \hat{f}$ for $f \in \mathbf{F}^{p}(\mathbb{T})$.

Theorem 1.1 justifies the statement (within a well defined and extensive class of spaces) that the Hausdorff-Young inequality has an $\ell^{p'}(\mathbb{Z})$ -valued extension to a larger maximal domain $\mathbf{F}^{p}(\mathbb{T})$, which we will call its *optimal lattice domain*. By (ii), $\mathbf{F}^{p}(\mathbb{T})$ is unique up to isomorphism; its norm turns out to be

$$||f||_{\mathbf{F}^{p}(\mathbb{T})} = \sup\{\int_{\mathbb{T}} |f| |\check{\phi}| dt : \phi \in \ell^{p}(\mathbb{Z}), ||\phi||_{p} = 1\}.$$

According to (iii), neither the random series mentioned above nor the functions (1.1) with Riemann singularities for $1 < \lambda < 2$ are contained in $\mathbf{F}^p(\mathbb{T})$. We remark that the above mentioned result and those below are also valid for higher dimensional tori $\mathbb{T}^d, d > 1$. It will become apparent in the sequel that the restriction conjecture for the Fourier transform (see [St2]) can be rephrased as finding sharp bounds for the $\mathbf{F}^p(\mathbb{T}^d)$ -norm of smooth bump functions with support in a δ -neighbourhood of the *d*-dimensional unit sphere.

We now turn to more concrete descriptions of $\mathbf{F}^{p}(\mathbb{T})$. Given $1 \leq p \leq 2$, define a vector subspace $V^{p}(\mathbb{T})$ of $L^{p'}(\mathbb{T})$ by

$$V^{p}(\mathbb{T}) = \{ h \in L^{p'}(\mathbb{T}) : h = \check{\phi} \text{ for some } \phi \in \ell^{p}(\mathbb{Z}) \}.$$

$$(1.2)$$

For each $f \in L^1(\mathbb{T})$ define a linear map $S_f : L^{\infty}(\mathbb{T}) \to c_0(\mathbb{Z})$ by

$$S_f: g \mapsto \widehat{fg}, \qquad g \in L^{\infty}(\mathbb{T}).$$
 (1.3)

Clearly S_f is continuous with operator norm $||S_f|| \leq ||f||_1$. For each $1 \leq p \leq 2$, let $\mathcal{L}(L^{\infty}(\mathbb{T}), \ell^{p'}(\mathbb{Z}))$ denote the Banach space of all continuous operators $T: L^{\infty}(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ equipped with the operator norm

$$||T||_{\infty,p'} = \sup_{\|g\|_{\infty}=1} ||Tg||_{p'}.$$

If $f \in L^1(\mathbb{T})$ has the property that $Range(S_f) \subset \ell^{p'}(\mathbb{Z})$, then the closed graph theorem implies that $||S_f||_{\infty,p'} < \infty$.

Theorem 1.2. Let $1 \le p \le 2$. Each of the spaces

$$\Delta^{p}(\mathbb{T}) = \{ f \in L^{1}(\mathbb{T}) : \int_{\mathbb{T}} |fg| \ dt < \infty, \ \forall g \in V^{p}(\mathbb{T}) \},$$
(1.4)

$$\Phi^{p}(\mathbb{T}) = \{ f \in L^{1}(\mathbb{T}) : \widehat{f\chi_{A}} \in \ell^{p'}(\mathbb{Z}), \forall A \in \mathcal{B}(\mathbb{T}) \},$$
(1.5)

$$\Gamma^{p}(\mathbb{T}) = \{ f \in L^{1}(\mathbb{T}) : Range(S_{f}) \subset \ell^{p'}(\mathbb{Z}) \},$$
(1.6)

coincides with the optimal lattice domain $\mathbf{F}^{p}(\mathbb{T})$ of the Hausdorff-Young inequality. Moreover, in the case of (1.6), the operator norm $||S_{f}||_{\infty,p'}$ is equivalent to the norm of f in $\mathbf{F}^{p}(\mathbb{T})$, for each $f \in \mathbf{F}^{p}(\mathbb{T})$.

- Remark 1.3. (i) For p = 1 it turns out that $\mathbf{F}^1(\mathbb{T}) = L^1(\mathbb{T})$ and for p = 2 that $\mathbf{F}^2(\mathbb{T}) = L^2(\mathbb{T})$. So, both the Fourier transform maps $F : L^1(\mathbb{T}) \to \ell^\infty(\mathbb{Z})$ and $F : L^2(\mathbb{T}) \to \ell^2(\mathbb{Z})$ are already defined on their optimal domain. Also, for $1 \leq p < q \leq 2$ we have $\ell^p(\mathbb{Z}) \subset \ell^q(\mathbb{Z})$ and therefore $V^p(\mathbb{T}) \subset V^q(\mathbb{T}) \subset L^2(\mathbb{T})$. It is then clear from (1.4) that $L^2(\mathbb{T}) \subset \mathbf{F}^q(\mathbb{T}) \subset \mathbf{F}^p(\mathbb{T}) \subset L^1(\mathbb{T})$.
 - (ii) It is not obvious from (1.5) that the space $\Phi^p(\mathbb{T})$ is actually an ideal relative to the pointwise a.e. order in $L^0(\mathbb{T})$. That is, if $f \in \Phi^p(\mathbb{T})$ and $g \in L^0(\mathbb{T})$ satisfies $|g| \leq |f|$ a.e., then also $g \in \Phi^p(\mathbb{T})$. Of course, being equal to the Banach function space $\mathbf{F}^p(\mathbb{T})$, it must have this property. In addition to having σ -order continuous norm, it will be seen that the optimal domain $\mathbf{F}^p(\mathbb{T})$ has other desirable properties; it is translation invariant, weakly sequentially complete, has the σ -Fatou property, etc. (see the end of Section 3).
- (iii) For $1 \le p \le 2$, the following question was raised some forty years ago by R.E. Edwards, [Ed, p.206]; What can be said about the family of functions $f \in L^1(\mathbb{T})$ having the property that $\widehat{f\chi_A}$ lies in $\ell^{p'}(\mathbb{Z})$ for all $A \in \mathcal{B}(\mathbb{T})$? Theorems 1.1 and 1.2 provide an exact answer: this family of functions is precisely the optimal lattice domain $\mathbf{F}^p(\mathbb{T})$ of the Fourier transform map $F: L^p(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$.

Remark 1.3(iii) raises the question of whether $\mathbf{F}^p(\mathbb{T})$ is genuinely larger than $L^p(\mathbb{T})$.

Theorem 1.4. Let $1 . Then both the inclusions <math>L^p(\mathbb{T}) \subset \mathbf{F}^p(\mathbb{T}) \subset L^1(\mathbb{T})$ are proper.

Remark 1.5. It is known that there exists $f \in L^1(\mathbb{T})$ whose Fourier transform does not lie in $\ell^{p'}(\mathbb{Z})$ for any $p < \infty$, e.g. $f(t) = \sum_{n=2}^{\infty} \frac{\cos nt}{\log n}$ has this property. Accordingly, the inclusion $\mathbf{F}^p(\mathbb{T}) \subset L^1(\mathbb{T})$ is always proper. That the other inclusion is also proper will be established in Section 4.

What is the connection between the (apparently) abstract space $\mathbf{F}^{p}(\mathbb{T})$ in the statement of Theorem 1.1 with the more concrete descriptions of $\mathbf{F}^{p}(\mathbb{T})$ given in Theorem 1.2? It is routine to check that the set function $m_{p}: \mathcal{B}(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ defined by

$$m_p: A \mapsto F(\chi_A), \quad A \in \mathcal{B}(\mathbb{T}),$$

$$(1.7)$$

is σ -additive, that is, it is an $\ell^{p'}(\mathbb{Z})$ -valued vector measure. Moreover, the m_p -null sets coincide with the Lebesgue null sets in \mathbb{T} . This crucial point allows us to view the Banach lattice $L^1(m_p)$ of all m_p -integrable functions (modulo m_p -null functions) as a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt)$. It is precisely the space $L^1(m_p)$ which is proved to have the optimality properties required of $\mathbf{F}^p(\mathbb{T})$ in Theorem 1.1. That is, $\mathbf{F}^p(\mathbb{T}) = L^1(m_p)$ and the integration map $f \mapsto \int_{\mathbb{T}} f dm_p$, from $L^1(m_p)$ to $\ell^{p'}(\mathbb{Z})$, is precisely the continuous extension of F from $L^p(\mathbb{T})$ to $\mathbf{F}^p(\mathbb{T})$. This approach to optimal extensions, via the integration map of appropriate vector measures, has proved to be effective in recent years in the treatment of various operators/inequalities arising in classical analysis; see for example [CR1],[CR2],[CR3],[CR4],[OR1],[OR2] and the references therein. For a different extension of the Fourier transform we refer to [Gu] and the references therein.

2 Proof of Theorem 1.1

We begin with some preliminaries concerning integration with respect to a general vector measure. A set function $m : \Sigma \to X$, where X is a complex Banach space and Σ is a σ algebra of subsets of a non-empty set Ω , is called a *vector measure* if it is σ -additive, that is, $m(\bigcup_{n=1}^{\infty} A_n) = \sum_{n=1}^{\infty} m(A_n)$ for all pairwise disjoint sequences $\{A_n\}_{n=1}^{\infty}$ in Σ with the series being (norm) unconditionally convergent in X. A set $A \in \Sigma$ is called *m*-null if m(B) = 0for all $B \in \Sigma$ which are contained in A. The variation |m| of *m* is the smallest, $[0, \infty]$ -valued measure satisfying $||m(A)|| \leq |m|(A)$, for all $A \in \Sigma$, and can be defined (as for scalar measures) via finite partitions, [DU, Ch.I]. If $|m|(\Omega) < \infty$, then *m* is said to have finite variation. The semi-variation of *m* is the set function $||m|| : \Sigma \to [0, \infty)$ defined by

$$||m||(A) := \sup_{x' \in X', ||x'|| = 1} |\langle m, x' \rangle|(A), \quad A \in \Sigma,$$
(2.1)

where X' is the dual Banach space of X and $\langle m, x \rangle$ denotes the complex measure $A \mapsto \langle m(A), x' \rangle$ on Σ , for each $x' \in X'$. Then

$$\sup_{B \in \Sigma, B \subset A} \|m(B)\| \le \|m\|(A) \le 4 \sup_{B \in \Sigma, B \subset A} \|m(B)\|$$
(2.2)

for each $A \in \Sigma$, [DU, p.4]. The vector measure *m* is said to have relatively compact range if the closure of its range $m(\Sigma) := \{m(A) : A \in \Sigma\}$ is a compact subset of *X*.

A Σ -measurable function $f: \Omega \to \mathbb{C}$ is called *m*-integrable if

$$\int_{\Omega} |f| \ d|\langle m, x' \rangle| < \infty, \quad x' \in X', \tag{2.3}$$

and for each $A \in \Sigma$ there exists a vector in X, necessarily unique and denoted by $\int_A f \, dm$, such that

$$\langle \int_{A} f dm, x' \rangle = \int_{A} f d\langle m, x' \rangle, \quad x' \in X'.$$
 (2.4)

By the Orlicz-Pettis theorem, [DU, p.22], the set function

$$m_f: A \mapsto \int_A f dm, \quad A \in \Sigma,$$
 (2.5)

is also an X-valued vector measure. The linear space of all *m*-integrable functions is denoted by $L^1(m)$; it is equipped with the lattice seminorm

$$||f||_{L^{1}(m)} := \sup_{x' \in X', \, ||x'|| = 1} \int_{\Omega} |f| \, d|\langle m, x' \rangle|.$$
(2.6)

Note that $||f||_{L^1(m)} = ||m_f||(\Omega)$, where $||m_f||(\cdot)$ is the semi-variation of the vector measure m_f . It follows from (2.2) applied to m_f that

$$\sup_{A \in \Sigma} \| \int_{A} f \, dm \| \le \| f \|_{L^{1}(m)} \le 4 \, \sup_{A \in \Sigma} \| \int_{A} f \, dm \|$$
(2.7)

for every $f \in L^1(m)$. A function $f \in L^1(m)$ is called *m*-null if $||f||_{L^1(m)} = 0$ or equivalently, if m_f is the zero vector measure. The quotient space of $L^1(m)$ modulo *m*-null functions is again identified with (and denoted by) $L^1(m)$. Then $L^1(m)$ is complete (i.e. a Banach space), [FNR], and the \mathbb{C} -valued, Σ -simple functions are dense in $L^1(m)$, [Le, Theorem 3.5]. Moreover, $L^1(m)$ is a complex Banach lattice relative to the pointwise *m*-a.e. order on Ω and the norm given by (2.6). That is, $|f| \leq |g|$ *m*-a.e. implies $||f||_{L^1(m)} \leq ||g||_{L^1(m)}$. Moreover, the norm is σ -order continuous (as a consequence) of the dominated convergence theorem, [Le2, Theorem 2.2], meaning that if non-negative functions f_n decrease to 0 as $n \to \infty$ in the order of $L^1(m)$, then $f_n \to 0$ in $L^1(m)$ as $n \to \infty$. For these claims we refer to [FNR] and the references therein. Moreover, every Σ -measurable function $f : \Omega \to \mathbb{C}$ which satisfies $|f| \leq K$, *m*-a.e., for some K > 0 (that is $f \in L^{\infty}(m)$), is necessarily *m*-integrable, [Le2, Theorem 2.2], and satisfies (via (2.6))

$$||f||_{L^{1}(m)} \le ||f||_{L^{\infty}(m)} ||m||(\Omega).$$
(2.8)

It follows from (2.7) that the integration map $I_m : f \mapsto \int_{\Omega} f \, dm$ is a continuous linear operator from $L^1(m)$ into X with operator norm $||I_m|| = 1$.

It is time to specialize to the particular vector measure (1.7).

Lemma 2.1. Let $1 \le p \le 2$.

- (i) The vector measure $m_p : \mathcal{B}(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ as given by (1.7) is mutually absolutely continuous with respect to Lebesgue measure on \mathbb{T} (i.e. m_p -null sets are Lebesgue null sets).
- (ii) For $1 , <math>m_p$ has infinite variation.
- (iii) The containment $L^1(m_p) \subset L^1(\mathbb{T})$ is valid with

$$||f||_1 \le ||f||_{L^1(m_p)}, \quad f \in L^1(m_p).$$
(2.9)

Moreover, $L^1(m_p)$ is dense in $L^1(\mathbb{T})$.

Proof. (i) is clear from (1.7) and the definition of the Fourier transform. For, if $A \in \mathcal{B}(\mathbb{T})$ has Lebesgue measure zero, then $\widehat{\chi}_B = 0$ for all $B \in \Sigma$ with $B \subset A$. So, A is m_p -null. On the other hand, suppose that $A \in \mathcal{B}(\mathbb{T})$ is m_p -null. Then, in particular, $\widehat{\chi}_A = 0$ and hence, by injectivity of the Fourier transform, $\chi_A = 0$ in $L^p(\mathbb{T})$, that is, |A| = 0.

(ii) Fix 1 and an integer <math>N > 1. Set $A_j = [2\pi(j-1)/N, 2\pi j/N)$ for $1 \le j \le N$. Then the sets A_j are pairwise disjoint and $|A_j| = 1/N$ for each $1 \le j \le N$. It is routine to check that

$$|\widehat{\chi_{A_1}}(m)| = 1/N, \quad 0 \le m < N,$$

and hence, that $\|\widehat{\chi}_{A_1}\|_{\ell^{p'}(\mathbb{Z})} \geq N^{-1/p}$. Since each function χ_{A_j} is a translate of χ_{A_1} for $1 < j \leq N$, it follows that

$$\sum_{j=1}^{N} \|m_p(A_j)\|_{p'} = \sum_{j=1}^{N} \|\widehat{\chi_{A_j}}\|_{p'} \ge N^{1-\frac{1}{p}}.$$

Hence, m_p must have infinite variation.

(iii) We have, for $\chi_{\{0\}} \in (\ell^{p'}(\mathbb{Z}))' = \ell^p(\mathbb{Z})$, that

$$\langle m_p(A), \chi_{\{0\}} \rangle = \widehat{\chi_A}(0) = |A|$$

that is

$$|A| = |\langle m_p, \chi_{\{0\}} \rangle | (A), \quad A \in \mathcal{B}(\mathbb{T})$$

According to (2.6), if $f \in L^1(m_p)$, then $\int_{\mathbb{T}} |f| dt = \int_{\mathbb{T}} |f| d| \langle m_p, \chi_{\{0\}} \rangle| < \infty$ and so $f \in L^1(\mathbb{T})$. Moreover, since $\|\chi_{\{0\}}\|_{\ell^p(\mathbb{Z})} = 1$, we obtain from (2.6) that

$$||f||_1 = \int_{\mathbb{T}} |f| \ dt = \int_{\mathbb{T}} |f| \ d|\langle m_p, \chi_{\{0\}}\rangle| \le ||f||_{L^1(m_p)}$$

This establishes $L^1(m_p) \subset L^1(\mathbb{T})$.

According to (i), the $\mathcal{B}(\mathbb{T})$ -simple functions in $L^1(m_p)$ coincide with those in $L^1(\mathbb{T})$. Hence, $L^1(m_p)$ is dense in $L^1(\mathbb{T})$.

Remark 2.2. For p = 1 the vector measure m_1 does have finite variation. Indeed, let $\{A_k\}$ be a Borel partition of \mathbb{T} . Then

$$\sum_{k} \|m_1(A_k)\|_{\infty} = \sum_{k} \|\widehat{\chi_{A_k}}\|_{\infty} \le \sum_{k} |A_k| = 1$$

and so $|m_1|(\mathbb{T})$ is finite.

A sublattice Z of $L^0(\mathbb{T})$ is an ideal if every $f \in L^0(\mathbb{T})$ satisfying $|f| \leq |h|$ for some $h \in Z$ is necessarily itself in Z. If, in addition, there is a norm on Z such that Z is a Banach lattice relative to this norm, for the order induced from $L^0(\mathbb{T})$, then Z is called a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt)$; see [Za, Ch.15]. Since the m_p -null sets and the Lebesgue null sets coincide, the previous recorded properties of the spaces $L^1(m)$, with m a general vector measure, when specialized to $L^1(m_p)$ imply that $L^1(m_p)$ is a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt)$. **Lemma 2.3.** Let $1 \leq p \leq 2$. Then $L^p(\mathbb{T}) \subset L^1(m_p)$ and

$$\int_{A} f dm_p = \widehat{f\chi_A}, \quad A \in \mathcal{B}(\mathbb{T}), \tag{2.10}$$

for every $f \in L^p(\mathbb{T})$. Moreover, we have

$$||f||_{L^1(m_p)} \le 4 ||f||_p, \quad f \in L^p(\mathbb{T}).$$
 (2.11)

Proof. To verify $L^p(\mathbb{T}) \subset L^1(m_p)$ it suffices to show that non-negative functions $f \in L^p(\mathbb{T})$ belong to $L^1(m_p)$. Choose simple functions $\{s_n\}_{n\in\mathbb{N}}$ with $0 \leq s_n \uparrow f$ pointwise on \mathbb{T} and fix $A \in \mathcal{B}(\mathbb{T})$. Since $L^p(\mathbb{T})$ has σ -order continuous norm, we conclude that $\chi_A s_n \to \chi_A f$ in $L^p(\mathbb{T})$ as $n \to \infty$. By continuity of the Fourier transform map we obtain $\widehat{\chi_A s_n} \to \widehat{\chi_A f}$ in $\ell^{p'}(\mathbb{Z})$ as $n \to \infty$. It is routine to check that

$$\int_{B} h \ dm_p = \widehat{\chi_B h}, \quad B \in \mathcal{B}(\mathbb{T}),$$

for every $\mathcal{B}(\mathbb{T})$ -simple function h on \mathbb{T} . Hence, $\int_A s_n dm_p \to \widehat{\chi_A f}$ in $\ell^{p'}(\mathbb{Z})$ as $n \to \infty$. According to [Le2, Theorem 2.4] the function $f \in L^1(m_p)$ and (2.10) holds.

To establish (2.11), let $f \in L^p(\mathbb{T})$. According to (2.7) and (2.10) we have

$$||f||_{L^1(m_p)} \le 4 \sup_{A \in \mathcal{B}(\mathbb{T})} ||\widehat{\chi_A f}||_{p'}.$$

By the Hausdorff-Young inequality

$$\|\widehat{\chi}_A f\|_{p'} \le \|\chi_A f\|_p \le \|f\|_p, \quad A \in \mathcal{B}(\mathbb{T}).$$

Hence, (2.11) holds.

Corollary 2.4. Let $1 \leq p \leq 2$. Then, for every $f \in L^1(m_p)$ and $A \in \mathcal{B}(\mathbb{T})$, we have

$$\int_{A} f \ dm_p = \widehat{\chi_A f}.$$
(2.12)

In particular, the integration map I_{m_p} is a continuous extension of F from $L^p(\mathbb{T})$ to $L^1(m_p)$, still with values in $\ell^{p'}(\mathbb{Z})$.

Proof. Fix $f \in L^1(m_p)$. Choose simple functions $\{s_n\}_{n \in \mathbb{N}}$ with $s_n \to f$ in $L^1(m_p)$ as $n \to \infty$. By continuity of the integration map $I_{m_p} : L^1(m_p) \to \ell^{p'}(\mathbb{Z})$ and (2.10) we have, for $A \in \mathcal{B}(\mathbb{T})$,

$$\lim_{n \to \infty} \widehat{\chi_A s_n} = \lim_{n \to \infty} \int_A s_n \ dm_p = \int_A f \ dm_p$$

with convergence in $\ell^{p'}(\mathbb{Z}) \hookrightarrow \ell^{\infty}(\mathbb{Z})$. On the other hand, (2.9) implies that $\chi_A s_n \to \chi_A f$ in $L^1(\mathbb{T})$ as $n \to \infty$ and so the continuity of $F : L^1(\mathbb{T}) \to \ell^{\infty}(\mathbb{Z})$ yields, for $A \in \mathcal{B}(\mathbb{T})$, that

$$\lim_{n \to \infty} \widehat{\chi_A s_n} = \widehat{\chi_A f}$$

with convergence in $\ell^{\infty}(\mathbb{Z})$. By uniqueness of Fourier transforms we see that (2.12) holds. \Box

Corollary 2.5. Let $1 \leq p \leq 2$. Then the vector measure $m_p : \mathcal{B}(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ does not have relatively compact range.

Proof. The closed convex hull of $m_p(\mathcal{B}(\mathbb{T}))$ is given by

$$C := \overline{co} \, m_p(\mathcal{B}(\mathbb{T})) = \{ \int_{\mathbb{T}} f \, dm_p \, : \, 0 \le f \le 1, \, f \in L^{\infty}(m_p) \},\$$

[DU, p.263]. Moreover, according to (2.12) each character e_n , for $n \in \mathbb{Z}$, satisfies

$$\chi_{\{n\}} = F(e_n) = \int_{\mathbb{T}} e_n \ dm_p \in C + C + iC + iC$$

So, if $m_p(\mathcal{B})$ is relatively compact in $\ell^{p'}(\mathbb{Z})$, then so is C + C + iC + iC and hence, also $\{\chi_{\{n\}} : n \in \mathbb{Z}\}$. But, this is surely not the case as $\|\chi_{\{n\}} - \chi_{\{k\}}\|_{p'} = 2^{1/p'}$ for $n \neq k$.

Proof of Theorem 1.1 We show that $\mathbf{F}^{p}(\mathbb{T}) := L^{1}(m_{p})$, equipped with the norm $\|\cdot\|_{\mathbf{F}^{p}(\mathbb{T})} := \|\cdot\|_{L^{1}(m_{p})}$, has all the required features. As already noted, $L^{1}(m_{p})$ is a Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt)$ with σ -order continuous norm. Part (i) of Theorem 1.1 is immediate from Lemma 2.3 and Corollary 2.4 and part (iii) is clear from Lemma 2.1 (iii).

To establish (ii), let Z be any Banach function space over $(\mathbb{T}, \mathcal{B}(\mathbb{T}), dt)$ with σ -order continuous norm such that $L^p(\mathbb{T}) \subset Z$ continuously and F has a continuous linear extension $T: Z \to \ell^{p'}(\mathbb{Z})$. Let $0 \leq f \in Z$. Choose simple functions $\{s_n\}_{n \in \mathbb{N}}$ such that $0 \leq s_n \uparrow f$ pointwise a.e. on \mathbb{T} and note that $\{s_n\}_{n \in \mathbb{N}} \subset L^p(\mathbb{T}) \subset Z$. Fix $A \in \mathcal{B}(\mathbb{T})$. Since Z has σ -order continuous norm, it follows that $T(s_n\chi_A) \to T(f\chi_A)$ in $\ell^{p'}(\mathbb{Z})$ as $n \to \infty$. But, for $n \in \mathbb{N}$ we have

$$T(s_n\chi_A) = F(s_n\chi_A) = \int_A s_n \ dm_p, \qquad (2.13)$$

and so $\int_A s_n dm_p \to T(f\chi_A)$ in $\ell^{p'}(\mathbb{Z})$ as $n \to \infty$. Again by [Le2, Theorem 2.4] it follows that $f \in L^1(m_p)$ and

$$\int_{A} f \ dm_p = \lim_{n \to \infty} \int_{A} s_n \ dm_p = T(f\chi_A).$$
(2.14)

The case for general $f \in Z$ follows by considering the positive and negative parts of both Re(f)and Im(f), all of which belong to Z. So, $Z \subset L^1(m_p)$. It remains to verify the continuity of this inclusion. Given $f \in Z$, it follows from (2.7) and (2.14) that

$$\|f\|_{L^{1}(m_{p})} \leq 4 \sup_{A \in \mathcal{B}(\mathbb{T})} \| \int_{A} f \ dm_{p} \|_{p'} = 4 \sup_{A \in \mathcal{B}(\mathbb{T})} \|T(\chi_{A}f)\|_{p'}.$$

By continuity, $||T(\chi_A f)||_{p'} \leq ||T|| ||f\chi_A||_Z$ and, since the norm on Z is a lattice norm and $|f\chi_A| \leq |f|$, also $||f\chi_A||_Z \leq ||f||_Z$ for each $A \in \mathcal{B}(\mathbb{T})$. It follows that

$$||f||_{L^1(m_p)} \le 4 ||T|| ||f||_Z$$

This completes the proof of Theorem 1.1.

Remark 2.6. We can now justify the claims made in Remark 1.3. Since $L^1(m_1) = \mathbf{F}^1(\mathbb{T})$ and also $L^1(m_1) = L^1(\mathbb{T})$, by Lemma 2.1 (iii) and Lemma 2.3 (with equivalent norms), it follows that $F^1(\mathbb{T}) = L^1(\mathbb{T})$.

For p = 2, the Plancherel theorem and (2.11) yield, for each $f \in L^2(\mathbb{T})$, that

$$||f||_{L^1(m_2)} \le 4 ||f||_2 = 4 ||\hat{f}||_2 \le 4 \sup_{A \in \mathcal{B}(\mathbb{T})} ||\widehat{\chi_A f}||_2.$$

Then apply (2.7) and (2.12) to conclude, for $f \in L^2(\mathbb{T})$, that

$$||f||_{L^1(m_2)} \le 4 ||f||_2 \le 4 ||f||_{L^1(m_2)}$$

Moreover, by Lemma 2.3, $L^2(\mathbb{T})$ is contained and dense in $L^1(m_2)$. It follows that $L^1(m_2) = L^2(\mathbb{T})$.

3 Proof of Theorem 1.2

To describe the space $L^1(m)$, for a general vector measure m, is rather difficult. However, for the vector measures m_p , with $1 \le p \le 2$, it will be shown in this section that this is possible.

According to (1.2), $V^p(\mathbb{T}) = \{h \in L^{p'}(\mathbb{T}) : h = \check{\phi} \text{ for some } \phi \in \ell^p(\mathbb{Z})\}$. Since $1 \leq p \leq 2$, we have $\ell^p(\mathbb{Z}) \subset \ell^2(\mathbb{Z})$ and so the inverse Fourier transform $\check{\phi} \in L^2(\mathbb{T})$ for $\phi \in \ell^p(\mathbb{Z})$. For $1 \leq p < 2$ the containment

$$V^{p}(\mathbb{T}) \subset L^{p'}(\mathbb{T}) \tag{3.1}$$

is always proper; see [Ka, p.101] for 1 . For <math>p = 1, note that $V^1(\mathbb{T}) = \{\hat{\phi} : \phi \in \ell^1(\mathbb{Z})\} \subset C(\mathbb{T})$ with a proper containment, [Ka, p.31].

Lemma 3.1. Let $1 \leq p \leq 2$ and $f \in L^0(\mathbb{T})$. Then $f \in L^1(m_p)$ if and only if

$$\int_{\mathbb{T}} |f| \ |h| \ dt < \infty, \quad h \in V^p(\mathbb{T}).$$
(3.2)

Proof. Suppose $f \in L^1(m_p)$. If $h = \check{\phi} \in V^p(\mathbb{T})$ for some $\phi \in \ell^p(\mathbb{Z})$, then (2.3) implies that $\int_{\mathbb{T}} |f| \ d|\langle m_p, \phi \rangle| < \infty$. Since $L^{p'}(\mathbb{T}) \subset L^2(\mathbb{T})$, we can apply Parseval's formula to conclude, for each $A \in \mathcal{B}(\mathbb{T})$, that

$$\langle m_p(A), \phi \rangle = \langle \widehat{\chi_A}, \widehat{h} \rangle = \langle \chi_A, \widetilde{h} \rangle = \int_A \widetilde{h} \, dt,$$

where $\tilde{h}(t) = h(-t)$ is the reflection of h. Accordingly, the variation measure $|\langle m_p, \phi \rangle|(A) = \int_A |\tilde{h}| dt$ for $A \in \mathcal{B}(\mathbb{T})$ and therefore

$$\int_{\mathbb{T}} |f| |\tilde{h}| dt = \int_{\mathbb{T}} |f| d|\langle m_p, \phi \rangle| < \infty.$$
(3.3)

Since $V^p(\mathbb{T})$ is invariant under formation of reflections, (3.2) holds. Conversely, let 1 $and suppose that <math>f \in L^0(\mathbb{T})$ satisfies (3.2). Given any $\phi \in \ell^p(\mathbb{Z})$ there exists $h \in L^{p'}(\mathbb{T})$ such that $\hat{h} = \phi$, [Ka, IV Theorem 2.2]. Then $h \in V^p(\mathbb{T})$ and hence, also $\tilde{h} \in V^p(\mathbb{T})$. So, $\int_{\mathbb{T}} |f| |\tilde{h}| dt < \infty$. Moreover, the same calculation as above shows that the equality in (3.3) holds and hence, is finite. So, f satisfies (2.3). Since the reflexive space $\ell^{p'}(\mathbb{Z})$ cannot contain an isomorphic copy of the Banach space c_0 , this alone suffices to ensure that $f \in L^1(m_p)$, [Le, Theorem 5.1]. For p = 1, note that the constant function $1 = \check{\chi}_{\{0\}}$ belongs to $V^1(\mathbb{T})$ and so $\int_{\mathbb{T}} |f| dt = \int_{\mathbb{T}} |f| \check{\chi}_{\{0\}} dt < \infty$, that is, $f \in L^1(\mathbb{T}) = L^1(m_1)$; see Remark 2.6.

Fix $1 and let <math>f \in \Phi^p(\mathbb{T})$; see (1.5). That is, $f \in L^1(\mathbb{T})$ has the property that $\widehat{\chi_A f} \in \ell^{p'}(\mathbb{Z})$ for every $A \in \mathcal{B}(\mathbb{T})$. Then the set function $\nu_f : \mathcal{B}(\mathbb{T}) \to \ell^{p'}(\mathbb{Z})$ defined by

$$A \mapsto \nu_f(A) := \widehat{\chi_A f}, \quad A \in \mathcal{B}(\mathbb{T}),$$
(3.4)

is surely finitely additive. Actually more is true.

Lemma 3.2. Let $1 . Then, for each <math>f \in \Phi^p(\mathbb{T})$, the finitely additive set function ν_f as given by (3.4) is σ -additive, that is, it is an $\ell^{p'}(\mathbb{Z})$ -valued vector measure on $\mathcal{B}(\mathbb{T})$.

Proof. Let Γ denote the linear span of $\chi_{\{m\}}$, for $m \in \mathbb{Z}$, and let $\{A_n\}_{n \in \mathbb{N}}$ be a pairwise disjoint sequence of sets in $\mathcal{B}(\mathbb{T})$. Let $\{A_{n_k}\}_{k \in \mathbb{N}}$ be any subsequence of $\{A_n\}_{n \in \mathbb{N}}$. Then, with $B = \bigcup_{k \in \mathbb{N}} A_{n_k}$, the dominated convergence theorem gives, for each $m \in \mathbb{Z}$, that

$$\sum_{k\in\mathbb{N}} \langle \nu_f(A_{n_k}), \chi_{\{m\}} \rangle = \sum_{k\in\mathbb{N}} \int_{\mathbb{T}} f(t) \ \chi_{A_{n_k}}(t) \ e^{-imt} \ dt = \widehat{f\chi_B}(m) = \sum_{k\in\mathbb{N}} \langle \nu_f(\bigcup_{k\in\mathbb{N}} A_{n_k}), \chi_{\{m\}} \rangle.$$
(3.5)

So, every subseries of $\sum_{k\in\mathbb{N}} \nu_f(A_n)$ is weakly Γ -convergent. Since the reflexive space $\ell^{p'}(\mathbb{Z})$ cannot contain an isomorphic copy of ℓ^{∞} and Γ is a total subset of $(\ell^{p'}(\mathbb{Z}))' = \ell^p(\mathbb{Z})$, it follows from the strengthened version of the Orlicz-Pettis theorem, [DU, p.23], that $\nu_f(\bigcup_{n\in\mathbb{N}}A_n)$ is unconditionally norm convergent (to $\nu_f(B)$). Accordingly, ν_f is σ -additive.

Proposition 3.3. Let $1 . Then <math>L^1(m_p) = \Phi^p(\mathbb{T})$.

Proof. By Corollary 2.4 and (1.5) it is clear that $L^1(m_p) \subset \Phi^p(\mathbb{T})$. Conversely, suppose that $f \in \Phi^p(\mathbb{T})$. Given $h \in V^p(\mathbb{T})$, there is $\phi \in \ell^p(\mathbb{Z})$ such that $\hat{h} = \phi$ and

$$\langle m_p, \phi \rangle(A) = \int_A \tilde{h} dt, \quad A \in \mathcal{B}(\mathbb{T});$$
(3.6)

see the proof of Lemma 3.1. According to Lemma 3.2,

$$A \mapsto \langle \nu_f(A), \phi \rangle = \langle \widehat{f\chi_A}, \hat{h} \rangle, \quad A \in \mathcal{B}(\mathbb{T}),$$

is σ -additive. Define $A_n = |f|^{-1}([0, n])$ for $n \in \mathbb{N}$, in which case $A \cap A_n \uparrow A$ for each $A \in \mathcal{B}(\mathbb{T})$. By σ -additivity of $\langle \nu_f(A), \phi \rangle$ we have

$$\langle \nu_f(A), \phi \rangle = \lim_{n \to \infty} \langle \widehat{f\chi_{A \cap A_n}}, \hat{h} \rangle.$$

Since each function $f\chi_{A\cap A_n}$ is bounded and $h \in L^2(\mathbb{T})$, Parseval's formula gives

$$\langle \nu_f(A), \phi \rangle = \lim_{n \to \infty} \int_{\mathbb{T}} f \chi_{A \cap A_n} \tilde{h} \ dt = \lim_{n \to \infty} \int_A f_n d\mu$$

where the functions $f_n = f\chi_{A_n} \in L^{\infty}(\mathbb{T})$ converge pointwise to f on \mathbb{T} and $d\mu = \tilde{h} dt$ is a complex measure. By [Le2, Lemma 2.3] we conclude that f is μ -integrable (i.e. $f\tilde{h} \in L^1(\mathbb{T})$) and

$$\int_{A} f\tilde{h} dt = \int_{A} f d\mu = \langle \nu_f(A), \phi \rangle.$$

So, $f\tilde{h} \in L^1(\mathbb{T})$ for all $h \in V^p(\mathbb{T})$. Then Lemma 3.1 implies that $f \in L^1(m_p)$.

We have an immediate consequence for the spaces $\Gamma^p(\mathbb{T})$ as given by (1.6).

Corollary 3.4. For each $1 we have <math>L^1(m_p) = \Gamma^p(\mathbb{T})$.

Proof. Let $f \in \Gamma^p(\mathbb{T})$. Then the operator S_f (see (1.3)) maps each $h \in L^{\infty}(\mathbb{T})$ into $\ell^{p'}(\mathbb{Z})$. In particular, for $h = \chi_A$ we have

$$S_f(\chi_A) = \widehat{f\chi_A} \in \ell^{p'}(\mathbb{Z}), \quad A \in \mathcal{B}(\mathbb{T}),$$

that is, $f \in \Phi^p(\mathbb{T})$. By Proposition 3.3 we have $f \in L^1(m_p)$.

Conversely, suppose that $f \in L^1(m_p)$. Given $h \in L^{\infty}(\mathbb{T})$, we have a.e. $|h| \leq ||h||_{\infty} \chi_{\mathbb{T}}$. Since the Lebesgue null sets and m_p -null sets coincide, we also have

$$|h| \le ||h||_{\infty} \chi_{\mathbb{T}}, \quad m_p - \text{a.e.}$$

$$(3.7)$$

In particular, $h \in L^{\infty}(m_p)$ and so $hf \in L^1(m_p)$ by the ideal property of the Banach function space $L^1(m_p)$. Then Corollary 2.4 can be applied to yield $S_f(h) = \widehat{fh} = \int_{\mathbb{T}} fh \ dm_p \in \ell^{p'}(\mathbb{Z})$ and hence, that

$$||S_f(h)||_{p'} = ||\int_{\mathbb{T}} fh \ dm_p||_{p'} \le ||fh||_{L^1(m_p)}$$

Since the norm of $L^1(m_p)$ is a lattice norm, by (3.7) we get $||fh||_{L^1(m_p)} \leq ||h||_{\infty} ||f||_{L^1(\mathbb{T})}$. Accordingly,

$$||S_f(h)||_{p'} \le ||h||_{\infty} ||f||_{L^1(m_p)}$$

This shows that S_f is a bounded operator from $L^{\infty}(\mathbb{T})$ to $\ell^{p'}(\mathbb{Z})$ with $||S_f||_{\infty,p'} \leq ||f||_{L^1(m_p)}$. In particular, $f \in \Gamma^p(\mathbb{T})$.

Proof of Theorem 1.2. Since $\mathbf{F}^p(\mathbb{T}) = L^1(m_p)$, it follows from Lemma 3.1 that $\mathbf{F}^p(\mathbb{T}) = \Delta^p(\mathbb{T})$, for all $1 \leq p \leq 2$. It is clear from (1.5) and (1.6) that $\Phi^1(\mathbb{T}) = \Gamma^1(\mathbb{T}) = L^1(\mathbb{T})$ and hence, $\Phi^1(\mathbb{T}) = \Gamma^1(\mathbb{T}) = \mathbf{F}^1(\mathbb{T})$ by Remark 2.6. For $1 , it follows from Proposition 3.3 that <math>\mathbf{F}^p(\mathbb{T}) = \Phi^p(\mathbb{T})$ and from Corollary 3.4 that $\mathbf{F}^p(\mathbb{T}) = \Gamma^p(\mathbb{T})$. Moreover, by (2.7) and Corollary 2.4 we have

$$\|f\|_{L^{1}(m_{p})} \leq 4 \sup_{A \in \mathcal{B}(\mathbb{T})} \|\int_{\mathbb{T}} \chi_{A} f \ dm_{p}\|_{p'} = 4 \sup_{A \in \mathcal{B}(\mathbb{T})} \|S_{f}(\chi_{A})\|_{p'} \leq 4 \ \|S_{f}\|_{\infty,p'}$$

Accordingly, for $f \in L^1(m_p) = \Gamma^p(\mathbb{T})$ the norms $||f||_{L^1(m_p)}$ and $||S_f||_{\infty,p'}$ are equivalent. \Box

In the remainder of this section we consider some properties of the optimal lattice domain $\mathbf{F}^p(\mathbb{T}) = L^1(m_p).$

Fix $1 . The associate space of the Banach function space <math>\mathbf{F}^{p}(\mathbb{T})$ consists of all $h \in L^{0}(\mathbb{T})$ satisfying

$$\int_{\mathbb{T}} |fh| \, dt < \infty, \qquad f \in \mathbf{F}^p(\mathbb{T}), \tag{3.8}$$

equipped with the norm $\sup\{\int_{\mathbb{T}} |fh| dt : ||f||_{\mathbf{F}^p(\mathbb{T})} = 1\}$, [Za, Ch.15, Sect. 69]. Since $\mathbf{F}^p(\mathbb{T})$ has σ -order continuous norm, the Banach space dual of $\mathbf{F}^p(\mathbb{T})$ coincides with its associate space, [Za, p.480]. Moreover, $(\mathbf{F}^p(\mathbb{T}))'$ is again a Banach function space in $L^0(\mathbb{T})$, [Za, p.457]. In particular, it is an ideal in $L^0(\mathbb{T})$. As noted in the proof of Lemma 3.1, a function $f \in L^0(\mathbb{T})$ belongs to $L^1(m_p)$ if and only if it satisfies (2.3). This implies that $L^1(m_p) = \mathbf{F}^p(\mathbb{T})$ is weakly sequentially complete, has the σ -Fatou property (i.e. $0 \leq f_n \uparrow f$ with $\{f_n\} \subset \mathbf{F}^p(\mathbb{T})$ a norm bounded sequence implies that $||f_n||_{\mathbf{F}^p(\mathbb{T})} \uparrow ||f||_{\mathbf{F}^p(\mathbb{T})}$) and that $L^1(m_p)$ coincides with its second associate space, [CR4, Prop. 2.1, 2.3, 2.4].

Note that the operator norm of $S_f \in \mathcal{L}(L^{\infty}(\mathbb{T}), \ell^{p'}(\mathbb{Z}))$, for $f \in \mathbf{F}^p(\mathbb{T})$, agrees with the norm of the dual operator

$$S_f^*: \ell^p(\mathbb{Z}) \ni \{a_n\} \mapsto f(x) \ \sum_{n \in \mathbb{Z}} a_n e^{-inx} \in L^1(\mathbb{T}) \subset L^\infty(\mathbb{T})'.$$

Since $\ell^p(\mathbb{Z})$ is modulation invariant, i.e. $\{a_n\}$ and $\{e^{in\alpha}a_n\}$ have the same norm, it is clear that $\mathbf{F}^p(\mathbb{T})$ is translation invariant. Moreover, it is easy to check that the translation operators $\tau_t f(x) = f(x-t)$ are continuous in $\mathbf{F}^p(\mathbb{T})$ and that τ_t converges to the identity for the strong operator topology as $t \to 0$. Accordingly, $\mathbf{F}^p(\mathbb{T})$ is a homogeneous Banach space, [Ka].

If $h \in V^p(\mathbb{T})$, then (3.8) holds because of (1.4) and Theorem 1.2. From the natural inclusion $L^p(\mathbb{T}) \subset \mathbf{F}^p(\mathbb{T})$ we then conclude that

$$V^{p}(\mathbb{T}) \subset (\mathbf{F}^{p}(\mathbb{T}))' \subset L^{p'}(\mathbb{T}).$$
(3.9)

Actually, since $\chi_{\mathbb{T}} \in V^p(\mathbb{T})$ and $(\mathbf{F}^p(\mathbb{T}))'$ is an ideal, we see that also $L^{\infty}(\mathbb{T}) \subset (\mathbf{F}^p(\mathbb{T}))'$. It follows easily from (3.8) that $(\mathbf{F}^p(\mathbb{T}))'$ is translation invariant. According to [Ka, IV Theorem 2.4], there exists $h \in C(\mathbb{T})$ such that $\hat{h} \notin \ell^p(\mathbb{Z})$. If the first containment in (3.9) was an equality,

then $V^p(\mathbb{T})$ would be an ideal and so the inequality $|h| \leq ||h||_{\infty} \chi_{\mathbb{T}}$ would give that $h \in V^p(\mathbb{T})$, which is not the case. Of course, since $V^p(\mathbb{T})$ contains the trigonometric polynomials, it surely separates the points of $\mathbf{F}^p(\mathbb{T})$. If the second containment in (3.9) was an equality, then $L^p(\mathbb{T})$ would coincide with the second associate space of $L^1(m_p)$ which, as noted above, equals $L^1(m_p) = \mathbf{F}^p(\mathbb{T})$. This contradicts Theorem 1.4. So, both containments in (3.9) are proper.

From the viewpoint of analysis, the weak sequential completeness of $\mathbf{F}^{p}(\mathbb{T})$ is difficult to use in practice since $(\mathbf{F}^{p}(\mathbb{T}))'$ is not explicitly known. However, there is available a good substitute in this regard. Indeed, Theorem 1.1 (iii) and the σ -Fatou property of $\mathbf{F}^{p}(\mathbb{T})$ show that $\mathbf{F}^{p}(\mathbb{T})$ is also a Banach function space in the more restricted sense of [BS]. Since $L^{\infty}(\mathbb{T})$ is an order ideal of $(\mathbf{F}^{p}(\mathbb{T}))'$ containing the simple functions, it follows from [BS, Ch.1, Theorem 5.2] that $\mathbf{F}^{p}(\mathbb{T})$ is also sequentially $\sigma(\mathbf{F}^{p}(\mathbb{T}), L^{\infty}(\mathbb{T}))$ -complete.

4 Proof of Theorem 1.4

The proof of Theorem 1.4, for p' > 2 an even integer, is somewhat easier because in this case we can rely on the Hardy-Littlewood majorant property of the spaces $L^p(\mathbb{T})$, [HL]. To see this and to get an idea of what type of functions are contained in $\mathbf{F}^p(\mathbb{T})$ we establish, e.g. for p = 4/3, the following

Lemma 4.1. If $f \in L^1(\mathbb{T})$ is non-negative and $\hat{f} \in \ell^4(\mathbb{Z})$, then $f \in \mathbf{F}^{4/3}(\mathbb{T})$ and

 $||f||_{\mathbf{F}^{4/3}(\mathbb{T})} \le 4 ||\hat{f}||_{\ell^4(\mathbb{Z})}.$

Proof. This follows from Parsevals's identity as follows. For $g \in L^{\infty}(\mathbb{T})$ we have

$$\|\widehat{fg}\|_{4}^{4} = \sum_{n \in \mathbb{Z}} |\widehat{fg}(n)|^{2} = \int_{\mathbb{T}} |fg * fg|^{2} dt \le \|g\|_{\infty}^{4} \int_{\mathbb{T}} |f * f|^{2} dt = \|g\|_{\infty}^{4} \|\widehat{f}\|_{4}^{4},$$

that is, $||S_f||_{\infty,4} \le ||\hat{f}||_4$. Hence, $||f||_{\mathbf{F}^{4/3}(\mathbb{T})} \le 4 ||S_f||_{\infty,4} \le 4 ||\hat{f}||_4$.

What we have said so far applies also for higher dimensional tori $\mathbb{T}^d \cong (-\pi, \pi]^d$. In particular, we may apply the previous Lemma to \mathbb{T}^2 to see that $L^{4/3}(\mathbb{T}^2)$ is a proper subspace of $\mathbf{F}^{4/3}(\mathbb{T}^2)$. In fact, for $\alpha > 0$, the Fourier transform of the non-negative function $M_\alpha : x \mapsto \frac{1}{\Gamma(\alpha)}(1-|x|^2)^{\alpha-1}_+$, defined on $(-\pi,\pi]^2$, decays asymptotically as $|n|^{-\frac{1}{2}-\alpha}$ for $n \to \infty$ in \mathbb{Z}^2 . Therefore, $M_\alpha \in \mathbf{F}^{4/3}(\mathbb{T}^2)$ for all $\alpha > 0$, whereas M_α is obviously not an $L^{4/3}(\mathbb{T}^2)$ -function for $\alpha \leq 1/4$.

We note that for $\alpha \to 0$ the functions M_{α} , considered as distributions on \mathbb{T}^2 , converge to arclength measure $d\sigma$ on the circle S^1 . Hence, for $\alpha \to 0$, the L^1 -function M_{α} does not converge in the $\mathbf{F}^{4/3}(\mathbb{T}^2)$ -norm. However, it was shown by E.M. Stein (see [Fe], [St]) that the operator

$$S_{\sigma}(f) = \widehat{fd\sigma}, \quad f \in C^{\infty}(S^1),$$

maps $L^2(S^1, d\sigma)$ and hence, also $L^{\infty}(S^1, d\sigma)$, boundedly into $L^q(\mathbb{R}^2)$ for some q > 4. The fact that S_{σ} maps $L^{\infty}(S^1, d\sigma)$ into $L^q(\mathbb{R}^2)$ for all q > 4 was also shown in [Fe]; see also [St]. An easy argument shows that we may replace $L^q(\mathbb{R}^2)$ with $\ell^q(\mathbb{Z}^2)$.

This motivates us to use Fourier restriction theory to establish that the inclusion $L^p(\mathbb{T}) \subset \mathbf{F}^p(\mathbb{T})$ is proper. For the proof of Theorem 1.4 we will employ the following result for Salem measures, [Mo, Mo2, Sa].

Proposition 4.2. There is a non-negative measure μ on \mathbb{R} with the following properties.

- (i) $E = \operatorname{supp}(\mu)$ is a compact subset of $[-1, 1] \subset (-\pi, \pi]$ of Hausdorff dimension $\alpha \in (0, 1)$.
- (ii) There is C > 0 such that, for each interval $I \subset \mathbb{R}$, we have

$$\mu(I) \le C \ |I|^{\alpha}.$$

(iii) For each $\varepsilon > 0$ there is $C_{\varepsilon} > 0$ such that the Fourier transform of μ (on \mathbb{R}) satisfies the asymptotic bound

$$|\widehat{\mu}(\xi)| \le C_{\varepsilon} |\xi|^{-\frac{\alpha}{2}+\varepsilon}, \quad |\xi| \to \infty.$$

(iv) The following analogue of the Stein-Tomas restriction inequality holds:

$$\int |\hat{f}(y)|^2 \ d\mu(y) \le C \ \|f\|_{L^p(\mathbb{R})}^2, \qquad f \in L^p(\mathbb{R}), \tag{4.1}$$

for $1 \le p < p_{\varepsilon}(\alpha)$, where $p_{\varepsilon}(\alpha) \to \frac{2(2-\alpha)}{4-3\alpha}$ as $\varepsilon \to 0^+$.

We will need to transfer inequality (4.1) to the torus. For a sequence $\{f_m\} \in \ell^p(\mathbb{Z})$ we consider $f(x) = \sum_{m \in \mathbb{Z}} f_m \chi_Q(2\pi m + x)$, where $Q = (-\pi, \pi]$ is a fundamental interval for the lattice $2\pi\mathbb{Z}$. Obviously we have $f \in L^p(\mathbb{R})$. Now apply (4.1) to f. Since $\hat{f}(\xi) = \widehat{\chi_Q}(\xi) \sum_{m \in \mathbb{Z}} f_m e^{im\xi} =: \widehat{\chi_Q}(\xi) F(\xi)$ and $|\chi_Q(\xi)| > 1/2$ on E, we obtain for the periodic function F the inequality

$$\int |F|^2 d\mu \le C \left(\sum_{m \in \mathbb{Z}} |f_m|^p\right)^{2/p}.$$
(4.2)

Hence, for each $g \in L^{\infty}(E, d\mu)$, we get by the dual inequality of (4.2) that

$$\left(\sum_{m\in\mathbb{Z}} |\widehat{gd\mu}(m)|^{p'}\right)^{\frac{1}{p'}} \le C \|g\|_{L^2(E,d\mu)} \le C \|g\|_{L^\infty(E,d\mu)}.$$

Denote by μ_t the translation of μ by $t \in \mathbb{R}$, let I be an open interval centred at 0 of length 1/10, let $\phi \in C^{\infty}(I)$ be non-negative with $\phi(0) = 1 = \widehat{\phi}(0)$ and, for $0 < \beta < 1$, define $r_{\beta}(t) = |t|^{-\beta}\phi(t)$. Now define the non-negative function

$$I_{\beta}(y) = \int_{\mathbb{R}} r_{\beta}(t) \ d\mu_t(y) = (r_{\beta} * \mu)(y), \quad y \in \mathbb{R}.$$

Note that $I_{\beta} \in L^1(\mathbb{R})$ and supp I_{β} is a proper subset of Q. Clearly, the left-hand side of (4.1) is translation invariant and so

$$\int |\hat{f}(y)|^2 d\mu_t(y) \le C \|f\|_{L^p(\mathbb{R})}^2, \qquad t \in \mathbb{R}.$$

Multiplying by r_{β} and then integrating with respect to t, gives

$$\int |\hat{f}(y)|^2 \ I_{\beta}(y) \ dy \le C \ \|f\|_{L^p(\mathbb{R})}^2$$

As above we obtain, for $F(x) = \sum_{m \in \mathbb{Z}} f_m e^{imx}$, that

$$\int_{Q} |F|^2 I_{\beta}(y) \, dy \le C \left(\sum_{m \in \mathbb{Z}} |f_m|^p\right)^{2/p} \tag{4.3}$$

and therefore, for each $g \in L^{\infty}(\mathbb{T})$, that

$$\left(\sum_{m\in\mathbb{Z}} |\widehat{gI_{\beta}}(m)|^{p'}\right)^{\frac{1}{p'}} \le C \|g\|_{L^{2}(Q,I_{\beta}(y)dy)} \le C \|g\|_{L^{\infty}(Q)} \int_{Q} I_{\beta}(y)dy.$$
(4.4)

That is, $I_{\beta} \in \mathbf{F}^{p}(\mathbb{T})$ for $0 < \beta < 1$ and $1 \leq p < p_{\varepsilon}(\alpha)$.

Proof of Theorem 1.4. We will show, for an appropriate choice of α and β , that $I_{\beta} \notin L^{p}(Q)$. Note that:

• from Proposition 4.2 (ii) we obtain $I_{\beta} \in L^{\infty}(Q)$ for $\beta < \alpha$ and, of course, $I_{\beta} \in L^{1}(Q)$ for $0 < \beta < 1$. Therefore, by convexity we get, for $\beta > \alpha$, that

$$I_{\beta} \in L^p(Q), \quad \text{if } p < \frac{1-\alpha}{\beta - \alpha}.$$
 (4.5)

Below we will see that this condition is essentially sharp.

• Since $|\widehat{r}_{\beta}(\xi)| \ge c |\xi|^{-(1-\beta)}$ as $|\xi| \to \infty$, we obtain

$$|\widehat{I}_{\beta}(\xi)| = |\widehat{\mu}(\xi) \, \widehat{r}_{\beta}(\xi)| \ge c \ |\widehat{\mu}(\xi)| \ |\xi|^{-(1-\beta)}, \quad |\xi| \to \infty.$$

Therefore

$$\int |\widehat{I}_{\beta}(\xi)|^2 d\xi \ge c \int |\widehat{\mu}(\xi)|^2 (1+|\xi|)^{-2(1-\beta)} d\xi \approx I_t(d\mu).$$

where $t = 2\beta - 1$ and $I_t(d\mu)$ is the *t*-energy of μ (see [Fa]). From property (iii) in Proposition 4.2 we obtain that $t \leq \dim_H E = \alpha$ (see [Fa, p.79]). That is, $\beta \leq \frac{1+\alpha}{2}$ provided $\int_{\mathbb{R}} |\widehat{I}_{\beta}(\xi)|^2 d\xi$ is finite. Suppose now that $\beta_0 > \alpha$ and $I_{\beta_0} \in L^{q_0}(Q)$ for $q_0 := \frac{1-\alpha+\delta}{\beta_0-\alpha}$ and some $\delta > 0$. Since $I_\beta \in L^\infty(Q)$ for $\beta < \alpha$, by convexity we obtain that $I_\beta \in L^2(\mathbb{R})$ for all $\beta < \frac{1+\alpha}{2} + \frac{\delta}{2}$. Hence, $\widehat{I_\beta} \in L^2(\mathbb{R})$, that is, the *t*-energy of μ is finite for all $t = 2\beta - 1 < \alpha + \delta$. Accordingly, $\delta = 0$.

Hence, for a given $p \in (1,2)$ we may choose $\alpha \in (0,1)$ such that $\frac{2(2-\alpha)}{4-3\alpha} > p$. By choosing $\beta > \alpha$ sufficiently close to 1 we can ensure that $I_{\beta} \notin L^{p}(\mathbb{T})$, but $I_{\beta} \in \mathbf{F}^{p}(\mathbb{T})$. \Box

We conclude with the observation that $L^r(\mathbb{T}) \not\subseteq \mathbf{F}^p(\mathbb{T})$ for $1 \leq r < p$ and $\mathbf{F}^p(\mathbb{T}) \not\subseteq L^r(\mathbb{T})$ for $1 < r \leq p$. The first statement follows by considering $f(t) = |t|^{-1/p}$. On the other hand, the above construction ensures, for any $r \in (1, p)$, that the space $\mathbf{F}^p(\mathbb{T})$ is not contained in $L^r(\mathbb{T})$. This is not surprising, since L^p -spaces merely measure a local property, whereas the $\mathbf{F}^p(\mathbb{T})$ -norm involves not only local properties but also arithmetic properties of a function (e.g.in case of I_β , "by lack of a better description" this means, not only are its peaks important but also how they are distributed relative to each other). One may also see this by estimating the $\mathbf{F}^p(\mathbb{T})$ -norm of f(mx) for $m \in \mathbb{N}$ and $f \in \mathbf{F}^p(\mathbb{T})$.

References

- [BS] C. Bennett and R. Sharpley, Interpolation of Operators. Academic Press, 1988.
- [CR1] G.P. Curbera and W.J. Ricker, Optimal domains for kernel operators via interpolation. Math. Nachr. 244 (2002), 47-67.
- [CR2] G.P. Curbera and W.J. Ricker, Optimal domains for the kernel operator associated with Sobolev's inequality. Studia Math. 158 (2003), 131-152 and 170 (2005), 217-218.
- [CR3] G.P. Curbera and W.J. Ricker, Compactness properties of Sobolev imbeddings for rearrangement invariant norms. Trans. Amer. Math. Soc., 359 (2007) 1471–1484.
- [CR4] G.P. Curbera and W.J. Ricker, Banach lattices with the Fatou property and optimal domains of kernel operators. Indag. Math. (N.S.), 17 (2006), 187–204.
- [DU] J. Diestel and J.J. Uhl., Jr., Vector Measures. Math. Surveys 15, AMS, 1977.
- [Ed] R.E. Edwards, Fourier Series, A Modern Introduction Vol. 2, Holt, Rinehart and Winston, 1967.
- [Fa] K. Falconer, Fractal Geometry. J. Wiley & Sons, 1990.
- [Fe] C. Fefferman, Inequalities for strongly singular convolution operators. Acta Math. 124 (1970), 9–36.
- [FNR] A. Fernandez, F. Naranjo, W.J. Ricker, Completeness of L¹-spaces for measures with values in complex vector spaces. J. Math. Anal. Appl. 223 (1998), no. 1, 76–87.

- [Gu] A. Gulisashvili, Rearrangement-invariant spaces of functions on LCA groups. J. Funct. Anal. 156 (1998), 384–410.
- [HL] G.H. Hardy and J.E. Littlewood, Notes on the theory of series (XIX): a problem concerning majorants of Fourier series. *Quart. J. Math.*, 6 (1935), 304–315.
- [Ka] Y. Katznelson, An Introduction to Harmonic Analysis, Dover Pub., 1976.
- [Le] D.R. Lewis, On integrability and summability in vector spaces, Illinois J. Math. 16 (1972), 294–307.
- [Le2] D.R. Lewis, Integration with respect to vector measures, Pacific J. Math. 33 (1970), 157–165.
- [Mo] G. Mockenhaupt, Bounds in Lebesgue Spaces of Oscillatory Integral Operators. Habilitationsschrift, Siegen 1996.
- [Mo2] G. Mockenhaupt, Salem sets and restriction properties of Fourier transforms, Geom. Funct. Anal. 10 (2000), no. 6, 1579–1587.
- [OR1] S. Okada and W.J. Ricker, Optimal domains and integral representations of convolution operators in $L^p(G)$. Integral Equations Operator Theory, 48(2004), no. 4, 525-546.
- [OR2] S. Okada and W.J. Ricker, Optimal domains and integral representations of $L^p(G)$ -valued convolution operators via measures. Math. Nachr., 280 (2007), 423–436.
- [Sa] R. Salem, On singular monotonic functions whose spectrum has a given Hausdorff dimension. Ark. Mat., 1 (1950),353–365.
- [St] E.M. Stein, *Harmonic Analysis*. Princeton Univ. Press, 1993.
- [St2] E.M. Stein, Some problems in harmonic analysis. Harmonic analysis in Euclidean spaces, Proc. Sympos. Pure Math., XXXV, Part 1, Amer. Math. Soc., 1978, pp. 3–20.
- [Za] A.C. Zaanen, *Integration*. 2nd rev. ed. North-Holland, Amsterdam; Interscience, 1967.
- [Zyg] A. Zygmund, Trigonometric Series. Cambridge University Press, 1959.

MATH.-GEOGR. FAKULTÄT KATHOLISCHE UNIVERSITÄT EICHSTÄTT-INGOLSTADT D-85072 EICHSTÄTT GERMANY *email:*

gerdm@ku-eichstaett.de werner.ricker@ku-eichstaett.de