
Optimal extension of the Hausdorff-Young inequality

G. Mockenhaupt and W.J. Ricker

Abstract
Given 1 < p < 2, we construct a Banach function space Fp(T) with σ-order contin-

uous norm which contains Lp(T) and has the property that the Fourier transform map
F : Lp(T) → `p′(Z) has a continuous `p′(Z)-valued extension to Fp(T). Moreover, Fp(T)
is maximal with these properties and satisfies Lp(T) ⊂ Fp(T) ⊂ L1(T) with both contain-
ments proper. Each Fp(T) turns out to be a weakly sequentially complete, translation
invariant, homogeneous Banach space and consists precisely of those functions f ∈ L1(T)
such that f̂χA ∈ `p′(Z) for every Borel set A ⊂ T. This answers a question of R.E.
Edwards posed some 40 years ago.

1 Introduction and main results

It is known that for 1 ≤ p ≤ 2 the Fourier transform F maps Lp(T) into `p′(Z), where
1/p′ + 1/p = 1, and the Hausdorff-Young inequality

‖f̂‖p′ ≤ ‖f‖p, f ∈ Lp(T)

ensures that F is continuous. Moreover, the Fourier transform is an injective map from dis-
tributions D(T) into the space of sequences of polynomial growth. The theme of this note is
to address the following question: Is the Hausdorff-Young inequality optimal? That is, keep-
ing the range space `p′(Z) fixed, is it possible to continuously extend the Fourier transform
operator F : Lp(T) → `p′(Z) to a Banach function space Fp(T), over the probability space
(T,B(T), dt) (see Section 2 for the definition), which is larger than Lp(T) and in such a way
that Fp(T) is maximal (or optimal) with this property? Moreover, if so, can Fp(T) be identified
in some ”concrete” way? That there exist distributions which are not in Lp(T), but whose
Fourier transform lies in `p′(Z), is known. Here are some examples (see [St, p.339],[Zyg, II,
p.102]). For almost all sign changes

∑
n≥1±n−1/2 cos nx is not integrable while its Fourier

transform is in all `p′(Z) for p′ > 2. An even more concrete example is a function with a
Riemann singularity of order 0 < λ < 2 at 0, say

fλ(x) = ei/x x−λ, 0 < x < 1 (1.1)

and fλ(x) = 0 elsewhere in (−π, π], which has Fourier transform f̂λ(n) =
√

iπ e2i
√

n n−3/4+λ/2 +
O(n−1+λ/2) if n → +∞ and decays like the power given in the O-term for n → −∞. Hence,
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f̂λ lies in `p′(Z) for certain p′ > 2 depending on λ while, for λ > 1, the function fλ ∈ L0(T)
is not integrable at 0. Here, L0(T) denotes the space of all complex-valued B(T)-measurable
(i.e. Borel measurable) functions on T.

Theorem 1.1. Let 1 ≤ p ≤ 2. There exists a Banach function space Fp(T) ⊂ L0(T) with
σ-order continuous norm ‖ · ‖Fp(T) and having the following properties:

(i) Lp(T) is continuously included in Fp(T) and the Fourier transform map F : Lp(T) →
`p′(Z) has an extension to a continuous linear operator from Fp(T) into `p′(Z). More
precisely,

‖f‖Fp(T) ≤ 4 ‖f‖p, f ∈ Lp(T).

(ii) If Z is any Banach function space over (T,B(T), dt) with σ-order continuous norm such
that Lp(T) is continuously included in Z and F has an extension to a continuous linear
operator from Z into `p′(Z), then Z is continuously included in Fp(T).

(iii) Fp(T) ⊂ L1(T) with ‖f‖1 ≤ ‖f‖Fp(T). Moreover, the `p′(Z)-valued extension of F from

Lp(T) to Fp(T) is again the map f → f̂ for f ∈ Fp(T).

Theorem 1.1 justifies the statement (within a well defined and extensive class of spaces)
that the Hausdorff-Young inequality has an `p′(Z)-valued extension to a larger maximal domain
Fp(T), which we will call its optimal lattice domain. By (ii), Fp(T) is unique up to isomorphism;
its norm turns out to be

‖f‖Fp(T) = sup{
∫

T
|f | |φ̌| dt : φ ∈ `p(Z), ‖φ‖p = 1}.

According to (iii), neither the random series mentioned above nor the functions (1.1) with
Riemann singularities for 1 < λ < 2 are contained in Fp(T). We remark that the above
mentioned result and those below are also valid for higher dimensional tori Td, d > 1. It will
become apparent in the sequel that the restriction conjecture for the Fourier transform (see
[St2]) can be rephrased as finding sharp bounds for the Fp(Td)-norm of smooth bump functions
with support in a δ-neighbourhood of the d-dimensional unit sphere.

We now turn to more concrete descriptions of Fp(T). Given 1 ≤ p ≤ 2, define a vector
subspace V p(T) of Lp′(T) by

V p(T) = {h ∈ Lp′(T) : h = φ̌ for some φ ∈ `p(Z)}. (1.2)

For each f ∈ L1(T) define a linear map Sf : L∞(T) → c0(Z) by

Sf : g 7→ f̂ g, g ∈ L∞(T). (1.3)

Clearly Sf is continuous with operator norm ‖Sf‖ ≤ ‖f‖1. For each 1 ≤ p ≤ 2, let
L(L∞(T), `p′(Z)) denote the Banach space of all continuous operators T : L∞(T) → `p′(Z)
equipped with the operator norm

‖T‖∞,p′ = sup
‖g‖∞=1

‖Tg‖p′ .
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If f ∈ L1(T) has the property that Range(Sf ) ⊂ `p′(Z), then the closed graph theorem implies
that ‖Sf‖∞,p′ < ∞.

Theorem 1.2. Let 1 ≤ p ≤ 2. Each of the spaces

∆p(T) = {f ∈ L1(T) :

∫

T
|fg| dt < ∞, ∀g ∈ V p(T)}, (1.4)

Φp(T) = {f ∈ L1(T) : f̂χA ∈ `p′(Z), ∀A ∈ B(T)}, (1.5)

Γp(T) = {f ∈ L1(T) : Range(Sf ) ⊂ `p′(Z)}, (1.6)

coincides with the optimal lattice domain Fp(T) of the Hausdorff-Young inequality. Moreover,
in the case of (1.6), the operator norm ‖Sf‖∞,p′ is equivalent to the norm of f in Fp(T), for
each f ∈ Fp(T).

Remark 1.3. (i) For p = 1 it turns out that F1(T) = L1(T) and for p = 2 that F2(T) =
L2(T). So, both the Fourier transform maps F : L1(T) → `∞(Z) and F : L2(T) →
`2(Z) are already defined on their optimal domain. Also, for 1 ≤ p < q ≤ 2 we have
`p(Z) ⊂ `q(Z) and therefore V p(T) ⊂ V q(T) ⊂ L2(T). It is then clear from (1.4) that
L2(T) ⊂ Fq(T) ⊂ Fp(T) ⊂ L1(T).

(ii) It is not obvious from (1.5) that the space Φp(T) is actually an ideal relative to the
pointwise a.e. order in L0(T). That is, if f ∈ Φp(T) and g ∈ L0(T) satisfies |g| ≤ |f |
a.e., then also g ∈ Φp(T). Of course, being equal to the Banach function space Fp(T), it
must have this property. In addition to having σ-order continuous norm, it will be seen
that the optimal domain Fp(T) has other desirable properties; it is translation invariant,
weakly sequentially complete, has the σ-Fatou property, etc. (see the end of Section 3).

(iii) For 1 ≤ p ≤ 2, the following question was raised some forty years ago by R.E. Edwards,[Ed,
p.206]; What can be said about the family of functions f ∈ L1(T) having the property that

f̂χA lies in `p′(Z) for all A ∈ B(T)? Theorems 1.1 and 1.2 provide an exact answer: this
family of functions is precisely the optimal lattice domain Fp(T) of the Fourier transform
map F : Lp(T) → `p′(Z).

Remark 1.3(iii) raises the question of whether Fp(T) is genuinely larger than Lp(T).

Theorem 1.4. Let 1 < p < 2. Then both the inclusions Lp(T) ⊂ Fp(T) ⊂ L1(T) are proper.

Remark 1.5. It is known that there exists f ∈ L1(T) whose Fourier transform does not lie in
`p′(Z) for any p < ∞, e.g. f(t) =

∑∞
n=2

cos nt
log n

has this property. Accordingly, the inclusion

Fp(T) ⊂ L1(T) is always proper. That the other inclusion is also proper will be established in
Section 4.

What is the connection between the (apparently) abstract space Fp(T) in the statement of
Theorem 1.1 with the more concrete descriptions of Fp(T) given in Theorem 1.2? It is routine
to check that the set function mp : B(T) → `p′(Z) defined by

mp : A 7→ F (χA), A ∈ B(T), (1.7)
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is σ-additive, that is, it is an `p′(Z)-valued vector measure. Moreover, the mp-null sets coincide
with the Lebesgue null sets in T. This crucial point allows us to view the Banach lattice L1(mp)
of all mp-integrable functions (modulo mp-null functions) as a Banach function space over
(T,B(T), dt). It is precisely the space L1(mp) which is proved to have the optimality properties
required of Fp(T) in Theorem 1.1. That is, Fp(T) = L1(mp) and the integration map f 7→∫
T fdmp, from L1(mp) to `p′(Z), is precisely the continuous extension of F from Lp(T) to Fp(T).

This approach to optimal extensions, via the integration map of appropriate vector measures,
has proved to be effective in recent years in the treatment of various operators/inequalities
arising in classical analysis; see for example [CR1],[CR2],[CR3],[CR4],[OR1],[OR2] and the
references therein. For a different extension of the Fourier transform we refer to [Gu] and the
references therein.

2 Proof of Theorem 1.1

We begin with some preliminaries concerning integration with respect to a general vector
measure. A set function m : Σ → X, where X is a complex Banach space and Σ is a σ-
algebra of subsets of a non-empty set Ω, is called a vector measure if it is σ-additive, that is,
m(∪∞n=1An) =

∑∞
n=1 m(An) for all pairwise disjoint sequences {An}∞n=1 in Σ with the series

being (norm) unconditionally convergent in X. A set A ∈ Σ is called m-null if m(B) = 0
for all B ∈ Σ which are contained in A. The variation |m| of m is the smallest, [0,∞]-valued
measure satisfying ‖m(A)‖ ≤ |m|(A), for all A ∈ Σ, and can be defined (as for scalar measures)
via finite partitions, [DU, Ch.I]. If |m|(Ω) < ∞, then m is said to have finite variation. The
semi-variation of m is the set function ‖m‖ : Σ → [0,∞) defined by

‖m‖(A) := sup
x′∈X′,‖x′‖=1

|〈m,x′〉|(A), A ∈ Σ, (2.1)

where X ′ is the dual Banach space of X and 〈m,x〉 denotes the complex measure A 7→
〈m(A), x′〉 on Σ, for each x′ ∈ X ′. Then

sup
B∈Σ,B⊂A

‖m(B)‖ ≤ ‖m‖(A) ≤ 4 sup
B∈Σ,B⊂A

‖m(B)‖ (2.2)

for each A ∈ Σ, [DU, p.4]. The vector measure m is said to have relatively compact range if
the closure of its range m(Σ) := {m(A) : A ∈ Σ} is a compact subset of X.

A Σ-measurable function f : Ω → C is called m-integrable if
∫

Ω

|f | d|〈m,x′〉| < ∞, x′ ∈ X ′, (2.3)

and for each A ∈ Σ there exists a vector in X, necessarily unique and denoted by
∫

A
f dm,

such that

〈
∫

A

fdm, x′〉 =

∫

A

f d〈m,x′〉, x′ ∈ X ′. (2.4)
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By the Orlicz-Pettis theorem, [DU, p.22], the set function

mf : A 7→
∫

A

fdm, A ∈ Σ, (2.5)

is also an X-valued vector measure. The linear space of all m-integrable functions is denoted
by L1(m); it is equipped with the lattice seminorm

‖f‖L1(m) := sup
x′∈X′, ‖x′‖=1

∫

Ω

|f | d|〈m,x′〉|. (2.6)

Note that ‖f‖L1(m) = ‖mf‖(Ω), where ‖mf‖(·) is the semi-variation of the vector measure mf .
It follows from (2.2) applied to mf that

sup
A∈Σ

‖
∫

A

f dm‖ ≤ ‖f‖L1(m) ≤ 4 sup
A∈Σ

‖
∫

A

f dm‖ (2.7)

for every f ∈ L1(m). A function f ∈ L1(m) is called m-null if ‖f‖L1(m) = 0 or equivalently,
if mf is the zero vector measure. The quotient space of L1(m) modulo m-null functions is
again identified with (and denoted by) L1(m). Then L1(m) is complete (i.e. a Banach space),
[FNR], and the C-valued, Σ-simple functions are dense in L1(m), [Le, Theorem 3.5]. Moreover,
L1(m) is a complex Banach lattice relative to the pointwise m-a.e. order on Ω and the norm
given by (2.6). That is, |f | ≤ |g| m-a.e. implies ‖f‖L1(m) ≤ ‖g‖L1(m). Moreover, the norm is
σ-order continuous (as a consequence) of the dominated convergence theorem, [Le2, Theorem
2.2], meaning that if non-negative functions fn decrease to 0 as n →∞ in the order of L1(m),
then fn → 0 in L1(m) as n → ∞. For these claims we refer to [FNR] and the references
therein. Moreover, every Σ-measurable function f : Ω → C which satisfies |f | ≤ K, m-a.e., for
some K > 0 (that is f ∈ L∞(m)), is necessarily m-integrable, [Le2, Theorem 2.2], and satisfies
(via (2.6))

‖f‖L1(m) ≤ ‖f‖L∞(m) ‖m‖(Ω). (2.8)

It follows from (2.7) that the integration map Im : f 7→ ∫
Ω

f dm is a continuous linear operator
from L1(m) into X with operator norm ‖Im‖ = 1.

It is time to specialize to the particular vector measure (1.7).

Lemma 2.1. Let 1 ≤ p ≤ 2.

(i) The vector measure mp : B(T) → `p′(Z) as given by (1.7) is mutually absolutely contin-
uous with respect to Lebesgue measure on T (i.e. mp-null sets are Lebesgue null sets).

(ii) For 1 < p ≤ 2, mp has infinite variation.

(iii) The containment L1(mp) ⊂ L1(T) is valid with

‖f‖1 ≤ ‖f‖L1(mp), f ∈ L1(mp). (2.9)

Moreover, L1(mp) is dense in L1(T).
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Proof. (i) is clear from (1.7) and the definition of the Fourier transform. For, if A ∈ B(T) has
Lebesgue measure zero, then χ̂B = 0 for all B ∈ Σ with B ⊂ A. So, A is mp-null. On the other
hand, suppose that A ∈ B(T) is mp-null. Then, in particular, χ̂A = 0 and hence, by injectivity
of the Fourier transform, χA = 0 in Lp(T), that is, |A| = 0.

(ii) Fix 1 < p ≤ 2 and an integer N > 1. Set Aj = [2π(j − 1)/N, 2πj/N) for 1 ≤ j ≤ N .
Then the sets Aj are pairwise disjoint and |Aj| = 1/N for each 1 ≤ j ≤ N . It is routine to
check that

|χ̂A1(m)| = 1/N, 0 ≤ m < N,

and hence, that ‖χ̂A1‖`p′ (Z) ≥ N−1/p. Since each function χAj
is a translate of χA1 for 1 < j ≤

N , it follows that
N∑

j=1

‖mp(Aj)‖p′ =
N∑

j=1

‖χ̂Aj
‖p′ ≥ N1− 1

p .

Hence, mp must have infinite variation.
(iii) We have, for χ{0} ∈ (`p′(Z))′ = `p(Z), that

〈mp(A), χ{0}〉 = χ̂A(0) = |A|
that is

|A| = |〈mp, χ{0}〉|(A), A ∈ B(T).

According to (2.6), if f ∈ L1(mp), then
∫
T |f | dt =

∫
T |f | d|〈mp, χ{0}〉| < ∞ and so f ∈ L1(T).

Moreover, since ‖χ{0}‖`p(Z) = 1, we obtain from (2.6) that

‖f‖1 =

∫

T
|f | dt =

∫

T
|f | d|〈mp, χ{0}〉| ≤ ‖f‖L1(mp).

This establishes L1(mp) ⊂ L1(T).
According to (i), the B(T)-simple functions in L1(mp) coincide with those in L1(T). Hence,

L1(mp) is dense in L1(T).

Remark 2.2. For p = 1 the vector measure m1 does have finite variation. Indeed, let {Ak} be
a Borel partition of T. Then

∑

k

‖m1(Ak)‖∞ =
∑

k

‖χ̂Ak
‖∞ ≤

∑

k

|Ak| = 1

and so |m1|(T) is finite.

A sublattice Z of L0(T) is an ideal if every f ∈ L0(T) satisfying |f | ≤ |h| for some h ∈ Z
is necessarily itself in Z. If, in addition, there is a norm on Z such that Z is a Banach lattice
relative to this norm, for the order induced from L0(T), then Z is called a Banach function space
over (T,B(T), dt); see [Za, Ch.15]. Since the mp-null sets and the Lebesgue null sets coincide,
the previous recorded properties of the spaces L1(m), with m a general vector measure, when
specialized to L1(mp) imply that L1(mp) is a Banach function space over (T,B(T), dt).
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Lemma 2.3. Let 1 ≤ p ≤ 2. Then Lp(T) ⊂ L1(mp) and
∫

A

fdmp = f̂χA, A ∈ B(T), (2.10)

for every f ∈ Lp(T). Moreover, we have

‖f‖L1(mp) ≤ 4 ‖f‖p, f ∈ Lp(T). (2.11)

Proof. To verify Lp(T) ⊂ L1(mp) it suffices to show that non-negative functions f ∈ Lp(T)
belong to L1(mp). Choose simple functions {sn}n∈N with 0 ≤ sn ↑ f pointwise on T and fix
A ∈ B(T). Since Lp(T) has σ-order continuous norm, we conclude that χAsn → χAf in Lp(T)

as n → ∞. By continuity of the Fourier transform map we obtain χ̂Asn → χ̂Af in `p′(Z) as
n →∞. It is routine to check that∫

B

h dmp = χ̂Bh, B ∈ B(T),

for every B(T)-simple function h on T. Hence,
∫

A
sn dmp → χ̂Af in `p′(Z) as n → ∞.

According to [Le2, Theorem 2.4] the function f ∈ L1(mp) and (2.10) holds.
To establish (2.11), let f ∈ Lp(T). According to (2.7) and (2.10) we have

‖f‖L1(mp) ≤ 4 sup
A∈B(T)

‖χ̂Af‖p′ .

By the Hausdorff-Young inequality

‖χ̂Af‖p′ ≤ ‖χAf‖p ≤ ‖f‖p, A ∈ B(T).

Hence, (2.11) holds.

Corollary 2.4. Let 1 ≤ p ≤ 2. Then, for every f ∈ L1(mp) and A ∈ B(T), we have
∫

A

f dmp = χ̂Af. (2.12)

In particular, the integration map Imp is a continuous extension of F from Lp(T) to L1(mp),
still with values in `p′(Z).

Proof. Fix f ∈ L1(mp). Choose simple functions {sn}n∈N with sn → f in L1(mp) as n → ∞.
By continuity of the integration map Imp : L1(mp) → `p′(Z) and (2.10) we have, for A ∈ B(T),

lim
n→∞

χ̂Asn = lim
n→∞

∫

A

sn dmp =

∫

A

f dmp,

with convergence in `p′(Z) ↪→ `∞(Z). On the other hand, (2.9) implies that χAsn → χAf in
L1(T) as n →∞ and so the continuity of F : L1(T) → `∞(Z) yields, for A ∈ B(T), that

lim
n→∞

χ̂Asn = χ̂Af,

with convergence in `∞(Z). By uniqueness of Fourier transforms we see that (2.12) holds.
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Corollary 2.5. Let 1 ≤ p ≤ 2. Then the vector measure mp : B(T) → `p′(Z) does not have
relatively compact range.

Proof. The closed convex hull of mp(B(T)) is given by

C := comp(B(T)) = {
∫

T
f dmp : 0 ≤ f ≤ 1, f ∈ L∞(mp)},

[DU, p.263]. Moreover, according to (2.12) each character en, for n ∈ Z, satisfies

χ{n} = F (en) =

∫

T
en dmp ∈ C + C + iC + iC.

So, if mp(B) is relatively compact in `p′(Z), then so is C + C + iC + iC and hence, also
{χ{n} : n ∈ Z}. But, this is surely not the case as ‖χ{n} − χ{k}‖p′ = 21/p′ for n 6= k.

Proof of Theorem 1.1 We show that Fp(T) := L1(mp), equipped with the norm ‖ · ‖Fp(T) :=
‖ · ‖L1(mp), has all the required features. As already noted, L1(mp) is a Banach function space
over (T,B(T), dt) with σ-order continuous norm. Part (i) of Theorem 1.1 is immediate from
Lemma 2.3 and Corollary 2.4 and part (iii) is clear from Lemma 2.1 (iii).

To establish (ii), let Z be any Banach function space over (T,B(T), dt) with σ-order con-
tinuous norm such that Lp(T) ⊂ Z continuously and F has a continuous linear extension
T : Z → `p′(Z). Let 0 ≤ f ∈ Z. Choose simple functions {sn}n∈N such that 0 ≤ sn ↑ f
pointwise a.e. on T and note that {sn}n∈N ⊂ Lp(T) ⊂ Z. Fix A ∈ B(T). Since Z has σ-order
continuous norm, it follows that T (snχA) → T (fχA) in `p′(Z) as n → ∞. But, for n ∈ N we
have

T (snχA) = F (snχA) =

∫

A

sn dmp, (2.13)

and so
∫

A
sn dmp → T (fχA) in `p′(Z) as n →∞. Again by [Le2, Theorem 2.4] it follows that

f ∈ L1(mp) and ∫

A

f dmp = lim
n→∞

∫

A

sn dmp = T (fχA). (2.14)

The case for general f ∈ Z follows by considering the positive and negative parts of both Re(f)
and Im(f), all of which belong to Z. So, Z ⊂ L1(mp). It remains to verify the continuity of
this inclusion. Given f ∈ Z, it follows from (2.7) and (2.14) that

‖f‖L1(mp) ≤ 4 sup
A∈B(T)

‖
∫

A

f dmp ‖p′ = 4 sup
A∈B(T)

‖T (χAf)‖p′ .

By continuity, ‖T (χAf)‖p′ ≤ ‖T‖ ‖fχA‖Z and, since the norm on Z is a lattice norm and
|fχA| ≤ |f |, also ‖fχA‖Z ≤ ‖f‖Z for each A ∈ B(T). It follows that

‖f‖L1(mp) ≤ 4 ‖T‖ ‖f‖Z .

This completes the proof of Theorem 1.1.
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Remark 2.6. We can now justify the claims made in Remark 1.3. Since L1(m1) = F1(T) and
also L1(m1) = L1(T), by Lemma 2.1 (iii) and Lemma 2.3 (with equivalent norms), it follows
that F 1(T) = L1(T).

For p = 2, the Plancherel theorem and (2.11) yield, for each f ∈ L2(T), that

‖f‖L1(m2) ≤ 4 ‖f‖2 = 4 ‖f̂‖2 ≤ 4 sup
A∈B(T)

‖χ̂Af‖2.

Then apply (2.7) and (2.12) to conclude, for f ∈ L2(T), that

‖f‖L1(m2) ≤ 4 ‖f‖2 ≤ 4 ‖f‖L1(m2).

Moreover, by Lemma 2.3, L2(T) is contained and dense in L1(m2). It follows that L1(m2) =
L2(T).

3 Proof of Theorem 1.2

To describe the space L1(m), for a general vector measure m, is rather difficult. However, for
the vector measures mp, with 1 ≤ p ≤ 2, it will be shown in this section that this is possible.

According to (1.2), V p(T) = {h ∈ Lp′(T) : h = φ̌ for some φ ∈ `p(Z)}. Since 1 ≤ p ≤ 2,
we have `p(Z) ⊂ `2(Z) and so the inverse Fourier transform φ̌ ∈ L2(T) for φ ∈ `p(Z). For
1 ≤ p < 2 the containment

V p(T) ⊂ Lp′(T) (3.1)

is always proper; see [Ka, p.101] for 1 < p < 2. For p = 1, note that V 1(T) = {φ̂ : φ ∈
`1(Z)} ⊂ C(T) with a proper containment, [Ka, p.31].

Lemma 3.1. Let 1 ≤ p ≤ 2 and f ∈ L0(T). Then f ∈ L1(mp) if and only if

∫

T
|f | |h| dt < ∞, h ∈ V p(T). (3.2)

Proof. Suppose f ∈ L1(mp). If h = φ̌ ∈ V p(T) for some φ ∈ `p(Z), then (2.3) implies that∫
T |f | d|〈mp, φ〉| < ∞. Since Lp′(T) ⊂ L2(T), we can apply Parseval’s formula to conclude, for

each A ∈ B(T), that

〈mp(A), φ〉 = 〈χ̂A, ĥ〉 = 〈χA, h̃〉 =

∫

A

h̃ dt,

where h̃(t) = h(−t) is the reflection of h. Accordingly, the variation measure |〈mp, φ〉|(A) =∫
A
|h̃| dt for A ∈ B(T) and therefore

∫

T
|f | |h̃| dt =

∫

T
|f | d|〈mp, φ〉| < ∞. (3.3)
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Since V p(T) is invariant under formation of reflections, (3.2) holds. Conversely, let 1 < p ≤ 2
and suppose that f ∈ L0(T) satisfies (3.2). Given any φ ∈ `p(Z) there exists h ∈ Lp′(T)
such that ĥ = φ, [Ka, IV Theorem 2.2]. Then h ∈ V p(T) and hence, also h̃ ∈ V p(T). So,∫
T |f | |h̃| dt < ∞. Moreover, the same calculation as above shows that the equality in (3.3)

holds and hence, is finite. So, f satisfies (2.3). Since the reflexive space `p′(Z) cannot contain
an isomorphic copy of the Banach space c0, this alone suffices to ensure that f ∈ L1(mp), [Le,
Theorem 5.1]. For p = 1, note that the constant function 1 = χ̌{0} belongs to V 1(T) and so∫
T |f | dt =

∫
T |f | χ̌{0} dt < ∞, that is, f ∈ L1(T) = L1(m1); see Remark 2.6.

Fix 1 < p ≤ 2 and let f ∈ Φp(T); see (1.5). That is, f ∈ L1(T) has the property that

χ̂Af ∈ `p′(Z) for every A ∈ B(T). Then the set function νf : B(T) → `p′(Z) defined by

A 7→ νf (A) := χ̂Af, A ∈ B(T), (3.4)

is surely finitely additive. Actually more is true.

Lemma 3.2. Let 1 < p ≤ 2. Then, for each f ∈ Φp(T), the finitely additive set function νf

as given by (3.4) is σ-additive, that is, it is an `p′(Z)-valued vector measure on B(T).

Proof. Let Γ denote the linear span of χ{m}, for m ∈ Z, and let {An}n∈N be a pairwise
disjoint sequence of sets in B(T). Let {Ank

}k∈N be any subsequence of {An}n∈N. Then, with
B = ∪k∈NAnk

, the dominated convergence theorem gives, for each m ∈ Z, that

∑

k∈N
〈νf (Ank

), χ{m}〉 =
∑

k∈N

∫

T
f(t) χAnk

(t) e−imt dt = f̂χB(m) =
∑

k∈N
〈νf (∪k∈NAnk

), χ{m}〉. (3.5)

So, every subseries of
∑

k∈N νf (An) is weakly Γ-convergent. Since the reflexive space `p′(Z)

cannot contain an isomorphic copy of `∞ and Γ is a total subset of (`p′(Z))′ = `p(Z), it follows
from the strengthened version of the Orlicz-Pettis theorem, [DU, p.23], that νf (∪n∈NAn) is
unconditionally norm convergent (to νf (B)). Accordingly, νf is σ-additive.

Proposition 3.3. Let 1 < p ≤ 2. Then L1(mp) = Φp(T).

Proof. By Corollary 2.4 and (1.5) it is clear that L1(mp) ⊂ Φp(T). Conversely, suppose that

f ∈ Φp(T). Given h ∈ V p(T), there is φ ∈ `p(Z) such that ĥ = φ and

〈mp, φ〉(A) =

∫

A

h̃ dt, A ∈ B(T); (3.6)

see the proof of Lemma 3.1. According to Lemma 3.2,

A 7→ 〈νf (A), φ〉 = 〈f̂χA, ĥ〉, A ∈ B(T),
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is σ-additive. Define An = |f |−1([0, n]) for n ∈ N, in which case A∩An ↑ A for each A ∈ B(T).
By σ-additivity of 〈νf (A), φ〉 we have

〈νf (A), φ〉 = lim
n→∞

〈 ̂fχA∩An , ĥ〉.

Since each function fχA∩An is bounded and h ∈ L2(T), Parseval’s formula gives

〈νf (A), φ〉 = lim
n→∞

∫

T
fχA∩Anh̃ dt = lim

n→∞

∫

A

fndµ,

where the functions fn = fχAn ∈ L∞(T) converge pointwise to f on T and dµ = h̃ dt is a
complex measure. By [Le2, Lemma 2.3] we conclude that f is µ-integrable (i.e. fh̃ ∈ L1(T))
and ∫

A

fh̃ dt =

∫

A

fdµ = 〈νf (A), φ〉.

So, fh̃ ∈ L1(T) for all h ∈ V p(T). Then Lemma 3.1 implies that f ∈ L1(mp).

We have an immediate consequence for the spaces Γp(T) as given by (1.6).

Corollary 3.4. For each 1 < p ≤ 2 we have L1(mp) = Γp(T).

Proof. Let f ∈ Γp(T). Then the operator Sf (see (1.3)) maps each h ∈ L∞(T) into `p′(Z). In
particular, for h = χA we have

Sf (χA) = f̂χA ∈ `p′(Z), A ∈ B(T),

that is, f ∈ Φp(T). By Proposition 3.3 we have f ∈ L1(mp).
Conversely, suppose that f ∈ L1(mp). Given h ∈ L∞(T), we have a.e. |h| ≤ ‖h‖∞ χT.

Since the Lebesgue null sets and mp-null sets coincide, we also have

|h| ≤ ‖h‖∞ χT, mp − a.e. (3.7)

In particular, h ∈ L∞(mp) and so hf ∈ L1(mp) by the ideal property of the Banach function

space L1(mp). Then Corollary 2.4 can be applied to yield Sf (h) = f̂h =
∫
T fh dmp ∈ `p′(Z)

and hence, that

‖Sf (h)‖p′ = ‖
∫

T
fh dmp‖p′ ≤ ‖fh‖L1(mp).

Since the norm of L1(mp) is a lattice norm, by (3.7) we get ‖fh‖L1(mp) ≤ ‖h‖∞ ‖f‖L1(T).
Accordingly,

‖Sf (h)‖p′ ≤ ‖h‖∞ ‖f‖L1(mp).

This shows that Sf is a bounded operator from L∞(T) to `p′(Z) with ‖Sf‖∞,p′ ≤ ‖f‖L1(mp). In
particular, f ∈ Γp(T).
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Proof of Theorem 1.2. Since Fp(T) = L1(mp), it follows from Lemma 3.1 that Fp(T) =
∆p(T), for all 1 ≤ p ≤ 2. It is clear from (1.5) and (1.6) that Φ1(T) = Γ1(T) = L1(T) and
hence, Φ1(T) = Γ1(T) = F1(T) by Remark 2.6. For 1 < p ≤ 2, it follows from Proposition
3.3 that Fp(T) = Φp(T) and from Corollary 3.4 that Fp(T) = Γp(T). Moreover, by (2.7) and
Corollary 2.4 we have

‖f‖L1(mp) ≤ 4 sup
A∈B(T)

‖
∫

T
χAf dmp‖p′ = 4 sup

A∈B(T)

‖Sf (χA)‖p′ ≤ 4 ‖Sf‖∞,p′ .

Accordingly, for f ∈ L1(mp) = Γp(T) the norms ‖f‖L1(mp) and ‖Sf‖∞,p′ are equivalent. ¤
In the remainder of this section we consider some properties of the optimal lattice domain

Fp(T) = L1(mp).
Fix 1 < p < 2. The associate space of the Banach function space Fp(T) consists of all

h ∈ L0(T) satisfying ∫

T
|fh| dt < ∞, f ∈ Fp(T), (3.8)

equipped with the norm sup{∫T |fh| dt : ‖f‖Fp(T) = 1}, [Za, Ch.15, Sect. 69]. Since Fp(T) has
σ-order continuous norm, the Banach space dual of Fp(T) coincides with its associate space,
[Za, p.480]. Moreover, (Fp(T))′ is again a Banach function space in L0(T), [Za, p.457]. In
particular, it is an ideal in L0(T). As noted in the proof of Lemma 3.1, a function f ∈ L0(T)
belongs to L1(mp) if and only if it satisfies (2.3). This implies that L1(mp) = Fp(T) is weakly
sequentially complete, has the σ-Fatou property (i.e. 0 ≤ fn ↑ f with {fn} ⊂ Fp(T) a norm
bounded sequence implies that ‖fn‖Fp(T) ↑ ‖f‖Fp(T)) and that L1(mp) coincides with its second
associate space, [CR4, Prop. 2.1, 2.3, 2.4].

Note that the operator norm of Sf ∈ L(L∞(T), `p′(Z)), for f ∈ Fp(T), agrees with the
norm of the dual operator

S∗f : `p(Z) 3 {an} 7→ f(x)
∑

n∈Z
ane−inx ∈ L1(T) ⊂ L∞(T)′.

Since `p(Z) is modulation invariant, i.e. {an} and {einαan} have the same norm, it is clear
that Fp(T) is translation invariant. Moreover, it is easy to check that the translation operators
τtf(x) = f(x− t) are continuous in Fp(T) and that τt converges to the identity for the strong
operator topology as t → 0. Accordingly, Fp(T) is a homogeneous Banach space, [Ka].

If h ∈ V p(T), then (3.8) holds because of (1.4) and Theorem 1.2. From the natural inclusion
Lp(T) ⊂ Fp(T) we then conclude that

V p(T) ⊂ (Fp(T))′ ⊂ Lp′(T). (3.9)

Actually, since χT ∈ V p(T) and (Fp(T))′ is an ideal, we see that also L∞(T) ⊂ (Fp(T))′. It
follows easily from (3.8) that (Fp(T))′ is translation invariant. According to [Ka, IV Theorem
2.4], there exists h ∈ C(T) such that ĥ /∈ `p(Z). If the first containment in (3.9) was an equality,
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then V p(T) would be an ideal and so the inequality |h| ≤ ‖h‖∞ χT would give that h ∈ V p(T),
which is not the case. Of course, since V p(T) contains the trigonometric polynomials, it
surely separates the points of Fp(T). If the second containment in (3.9) was an equality, then
Lp(T) would coincide with the second associate space of L1(mp) which, as noted above, equals
L1(mp) = Fp(T). This contradicts Theorem 1.4. So, both containments in (3.9) are proper.

From the viewpoint of analysis, the weak sequential completeness of Fp(T) is difficult to use
in practice since (Fp(T))′ is not explicitly known. However, there is available a good substitute
in this regard. Indeed, Theorem 1.1 (iii) and the σ-Fatou property of Fp(T) show that Fp(T)
is also a Banach function space in the more restricted sense of [BS]. Since L∞(T) is an order
ideal of (Fp(T)))′ containing the simple functions , it follows from [BS, Ch.1, Theorem 5.2]
that Fp(T) is also sequentially σ(Fp(T), L∞(T))-complete.

4 Proof of Theorem 1.4

The proof of Theorem 1.4, for p′ > 2 an even integer, is somewhat easier because in this case
we can rely on the Hardy-Littlewood majorant property of the spaces Lp(T), [HL]. To see
this and to get an idea of what type of functions are contained in Fp(T) we establish, e.g. for
p = 4/3, the following

Lemma 4.1. If f ∈ L1(T) is non-negative and f̂ ∈ `4(Z), then f ∈ F4/3(T) and

‖f‖F4/3(T) ≤ 4 ‖f̂‖`4(Z).

Proof. This follows from Parsevals’s identity as follows. For g ∈ L∞(T) we have

‖f̂g‖4
4 =

∑

n∈Z
|f̂g(n) f̂ g(n)|2 =

∫

T
|fg ∗ fg|2 dt ≤ ‖g‖4

∞

∫

T
|f ∗ f |2 dt = ‖g‖4

∞ ‖f̂‖4
4,

that is, ‖Sf‖∞,4 ≤ ‖f̂‖4. Hence, ‖f‖F4/3(T) ≤ 4 ‖Sf‖∞,4 ≤ 4 ‖f̂‖4.

What we have said so far applies also for higher dimensional tori Td ∼= (−π, π]d. In
particular, we may apply the previous Lemma to T2 to see that L4/3(T2) is a proper subspace
of F4/3(T2). In fact, for α > 0, the Fourier transform of the non-negative function Mα : x 7→

1
Γ(α)

(1 − |x|2)α−1
+ , defined on (−π, π]2, decays asymptotically as |n|− 1

2
−α for n → ∞ in Z2.

Therefore, Mα ∈ F4/3(T2) for all α > 0, whereas Mα is obviously not an L4/3(T2)-function for
α ≤ 1/4.

We note that for α → 0 the functions Mα, considered as distributions on T2, converge
to arclength measure dσ on the circle S1. Hence, for α → 0, the L1-function Mα does not
converge in the F4/3(T2)-norm. However, it was shown by E.M. Stein (see [Fe], [St]) that the
operator

Sσ(f) = f̂dσ, f ∈ C∞(S1),
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maps L2(S1, dσ) and hence, also L∞(S1, dσ), boundedly into Lq(R2) for some q > 4. The fact
that Sσ maps L∞(S1, dσ) into Lq(R2) for all q > 4 was also shown in [Fe]; see also [St]. An
easy argument shows that we may replace Lq(R2) with `q(Z2).

This motivates us to use Fourier restriction theory to establish that the inclusion Lp(T) ⊂
Fp(T) is proper. For the proof of Theorem 1.4 we will employ the following result for Salem
measures, [Mo, Mo2, Sa].

Proposition 4.2. There is a non-negative measure µ on R with the following properties.

(i) E = supp(µ) is a compact subset of [−1, 1] ⊂ (−π, π] of Hausdorff dimension α ∈ (0, 1).

(ii) There is C > 0 such that, for each interval I ⊂ R, we have

µ(I) ≤ C |I|α.

(iii) For each ε > 0 there is Cε > 0 such that the Fourier transform of µ (on R) satisfies the
asymptotic bound

|µ̂(ξ)| ≤ Cε |ξ|−α
2
+ε, |ξ| → ∞.

(iv) The following analogue of the Stein-Tomas restriction inequality holds:
∫
|f̂(y)|2 dµ(y) ≤ C ‖f‖2

Lp(R), f ∈ Lp(R), (4.1)

for 1 ≤ p < pε(α), where pε(α) → 2(2−α)
4−3α

as ε → 0+. ¤

We will need to transfer inequality (4.1) to the torus. For a sequence {fm} ∈ `p(Z)
we consider f(x) =

∑
m∈Z fm χQ(2πm + x), where Q = (−π, π] is a fundamental inter-

val for the lattice 2πZ. Obviously we have f ∈ Lp(R). Now apply (4.1) to f . Since
f̂(ξ) = χ̂Q(ξ)

∑
m∈Z fmeimξ =: χ̂Q(ξ)F (ξ) and |χQ(ξ)| > 1/2 on E, we obtain for the peri-

odic function F the inequality
∫
|F |2 dµ ≤ C

( ∑

m∈Z
|fm|p

)2/p
. (4.2)

Hence, for each g ∈ L∞(E, dµ), we get by the dual inequality of (4.2) that

( ∑

m∈Z
|ĝdµ(m)|p′

) 1
p′ ≤ C ‖g‖L2(E,dµ) ≤ C ‖g‖L∞(E,dµ).

Denote by µt the translation of µ by t ∈ R, let I be an open interval centred at 0 of length
1/10, let φ ∈ C∞(I) be non-negative with φ(0) = 1 = φ̂(0) and, for 0 < β < 1, define
rβ(t) = |t|−βφ(t). Now define the non-negative function

Iβ(y) =

∫

R
rβ(t) dµt(y) = (rβ ∗ µ)(y), y ∈ R.
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Note that Iβ ∈ L1(R) and supp Iβ is a proper subset of Q. Clearly, the left-hand side of (4.1)
is translation invariant and so

∫
|f̂(y)|2 dµt(y) ≤ C ‖f‖2

Lp(R), t ∈ R.

Multiplying by rβ and then integrating with respect to t, gives

∫
|f̂(y)|2 Iβ(y) dy ≤ C ‖f‖2

Lp(R).

As above we obtain, for F (x) =
∑

m∈Z fm eimx, that

∫

Q

|F |2 Iβ(y) dy ≤ C
( ∑

m∈Z
|fm|p

)2/p

(4.3)

and therefore, for each g ∈ L∞(T), that

( ∑

m∈Z
|ĝ Iβ(m)|p′

) 1
p′ ≤ C ‖g‖L2(Q,Iβ(y)dy) ≤ C ‖g‖L∞(Q)

∫

Q

Iβ(y)dy. (4.4)

That is, Iβ ∈ Fp(T) for 0 < β < 1 and 1 ≤ p < pε(α).
Proof of Theorem 1.4. We will show, for an appropriate choice of α and β, that Iβ /∈ Lp(Q).
Note that:

• from Proposition 4.2 (ii) we obtain Iβ ∈ L∞(Q) for β < α and, of course, Iβ ∈ L1(Q) for
0 < β < 1. Therefore, by convexity we get, for β > α, that

Iβ ∈ Lp(Q), if p <
1− α

β − α
. (4.5)

Below we will see that this condition is essentially sharp.

• Since |r̂β(ξ)| ≥ c |ξ|−(1−β) as |ξ| → ∞, we obtain

|Îβ(ξ)| = |µ̂(ξ) r̂β(ξ)| ≥ c |µ̂(ξ)| |ξ|−(1−β), |ξ| → ∞.

Therefore ∫
|Îβ(ξ)|2 dξ ≥ c

∫
|µ̂(ξ)|2 (1 + |ξ|)−2(1−β) dξ ≈ It(dµ),

where t = 2β − 1 and It(dµ) is the t-energy of µ (see [Fa]). From property (iii) in
Proposition 4.2 we obtain that t ≤ dimH E = α (see [Fa, p.79]). That is, β ≤ 1+α

2

provided
∫
R |Îβ(ξ)|2 dξ is finite.
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Suppose now that β0 > α and Iβ0 ∈ Lq0(Q) for q0 := 1−α+δ
β0−α

and some δ > 0. Since Iβ ∈ L∞(Q)

for β < α, by convexity we obtain that Iβ ∈ L2(R) for all β < 1+α
2

+ δ
2
. Hence, Îβ ∈ L2(R),

that is, the t-energy of µ is finite for all t = 2β − 1 < α + δ. Accordingly, δ = 0.
Hence, for a given p ∈ (1, 2) we may choose α ∈ (0, 1) such that 2(2−α)

4−3α
> p. By choosing

β > α sufficiently close to 1 we can ensure that Iβ /∈ Lp(T), but Iβ ∈ Fp(T). ¤
We conclude with the observation that Lr(T) * Fp(T) for 1 ≤ r < p and Fp(T) * Lr(T)

for 1 < r ≤ p. The first statement follows by considering f(t) = |t|−1/p. On the other hand,
the above construction ensures, for any r ∈ (1, p), that the space Fp(T) is not contained in
Lr(T). This is not surprising, since Lp-spaces merely measure a local property, whereas the
Fp(T)-norm involves not only local properties but also arithmetic properties of a function
(e.g.in case of Iβ, ”by lack of a better description” this means, not only are its peaks important
but also how they are distributed relative to each other). One may also see this by estimating
the Fp(T)-norm of f(mx) for m ∈ N and f ∈ Fp(T).
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