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1 The majorant property: Introduction

This paper is concerned with versions of the majorant property of various randomly generated subsets
of integers in [1, N ]. More precisely, suppose A ⊂ [1, N ] is a set of integers of size |A| � Nρ for some
fixed 0 < ρ < 1. For example, one can take A to be the squares, cubes, etc., or (multi-dimensional)
arithmetic progressions in [1, N ]. Given p ≥ 2 we ask for the smallest constant C such that uniformly
for |an| majorized by 1 (we write e(nt) = e2πint)

(1.1)
∥∥∥∑
n∈A

an e(n·)
∥∥∥
p
≤ C

∥∥∥∑
n∈A

e(n·)
∥∥∥
p
.

If p is an even integer, then one can take C = 1, in particular C does not depend on A (resp. N). In
fact, Hardy and Littlewood [HL] realized that whenever |an| ≤ bn and p even

(1.2)
∥∥∥ N∑
n=1

an e(n·)
∥∥∥
p
≤ C

∥∥∥ N∑
n=1

bn e(n·)
∥∥∥
p

holds with C = 1. On the other hand, it has been known for some time that if p is not an even integer
the constant C in (1.2) does grow unboundedly with N (see, e.g. [Mont, p.133]). A quantitative lower
bound of order N c/ log logN , for some c > 0, is obtained in [M] for (1.1) with a particular sequence
of integer sets AN in [1, N ]. We will improve on this lower bound and show that for an appropriate
sequence of integer sets AN ⊂ [1, N ] the constants in (1.1) grow by a power in N (see Theorem (3.2)).
This result has also been obtained with a similar method by B. Green and I. Ruzsa [GR] for the
case p = 3. Unfortunately, both methods do not reveal a structural property of sets A which would
guaranty a power growth in N of the constant C in (1.1).

Inequality (1.1) for particular sets A plays an important role in analysis and number theory. For
example, it is conjectured by H. Montgomery (see [Mont, p.11]) that for 2 < p < 4 the frequency sets

A = { [Np/2 log n] | 1 ≤ n ≤ N},

here [·] denotes the integer part, satisfy (1.1) with a slow growing bound C = CεN
ε, ε > 0. We may

also interpret (1.1) for certain sets A as a reformulations of the restriction conjecture for the Fourier
transform on Rd:

‖f̂‖L1(Sd−1,dσ) ≤ C ‖f‖Lp(Rd), p < 2d/(d+ 1),

here σ is rotational invariant measure on the unit sphere Sd−1 ⊂ Rd. This can be seen by localizing
the above restriction inequality, i.e. assuming f is supported in a ball of radius N , and by using the
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uncertainty principle, which allows us to assume that f̂ is essentially constant on squares of size 1/N .
The relevant sets A are of the form

A = {Q(
n1

Q1
+ · · ·+ nd

Qd
) | 0 < ni ∈ Z, N2 < n2

1 + · · ·+ n2
d ≤ (N + 1)2 },

where Q = Q1 · · ·Qd and the Qi’s are relatively prime integers of order N (see [M] for those matters.)
The main objective of the paper is to show that random sets of integers A ⊂ [1, N ] of size Nρ which
are obtained by selecting each integer 1 ≤ n ≤ N with equal probability satisfy for all γ > 0

(1.3) sup
|an|≤1

∥∥∥∑
n∈A

an e(n·)
∥∥∥
p
≤ CγN

γ
∥∥∥∑
n∈A

e(n·)
∥∥∥
p

with large probability (see Theorem 4.4). Theorem 4.4 relies on a nice argument developed by
Bourgain in [B4]. In section (4.3) we first provide a method for proving a weaker variant of Theorem 4.4
(see Proposition 4.6) which will later allow us to extend this result for certain values of p by showing
a that the Nγ-term is not necessary (see Theorem 4.12). For this we rely on a probabilistic lemma
from Bourgain’s work [B1].

In addition to random subsets in the last section we also consider perturbations of arithmetic
progressions. This means that each element of a given arithmetic progression is shifted independently
and randomly by some small amount. We again show that most sets obtained in this fashion sat-
isfy (1.3) for any γ > 0, see Theorem 5.6. As before, the method can be presented abstractly for
perturbations of arbitrary sets A that satisfy condition (2.3). Given the fact that even a single explizit
frequency set A of satisfying e.g. |A ∩ [0, N ]| ≈ Nα, 0 < α < 1, as well as e.g inequality (4.15) is not
known, we think that this is worth mentioning.
Acknowledgment: The authors would like to thank Jean Bourgain for several suggestions and
comments. The first author was supported NSF grant DMS-0300416. The second author was partially
supported by an NSF grant, DMS-0070538, and a Sloan fellowship.

2 Some generalities

In order to justify the size restriction |A| � Nρ, 0 < ρ < 1, on a frequency set A ⊂ [1, N ] we remark
that by Hausdorff-Young’s inequality one always has the bound

sup
|an|≤1

∥∥∥∑
n∈A

ane(n·)
∥∥∥
p
≤ C

( N

|A|

) 1
p
∥∥∥∑
n∈A

e(n·)
∥∥∥
p
.

Together with the the obvious lower bound
∥∥∥∑n∈A e(n·)

∥∥∥p
p
& |A|pN−1 this settles the case of any

large sets A, i.e. ρ = 1, as well as all arithmetic progressions. Another easy estimate can be
obtained by interpolation. Indeed, if 2 < p < 4, say, then interpolating between 2 and 4 yields
the bound C = O(Nγ), γ ≤ (1 − p

4)(1 − 2
p). It turns out that this interpolation can be done more

carefully, which gives optimal results for sets A whose Dirichlet kernel satisfies a certain “reverse
interpolation inequality.” To this end, consider the convex set of trigonometric polynomials given by
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PA := {
∑

n∈A ane(nθ) | |an| ≤ 1}. Then for any odd integer p > 2,

sup
|an|≤1

∫ 1

0

∣∣∣∑
n∈A

an e(nθ)
∣∣∣p dθ = sup

|an|≤1

∑
n∈A

an

∫ 1

0
e(nθ)

∑
k∈A

āk e(−kθ)
∣∣∣∑
`∈A

a` e(`θ)
∣∣∣p−2

dθ

≤ sup
g∈PA

√
|A|

(∑
n∈A

∣∣ ĝ|g|p−2(n)
∣∣2) 1

2

≤ sup
g∈PA

√
|A| ‖g‖p−1

2(p−1)(2.1)

≤
∥∥∥∑
n∈A

e(n·)
∥∥∥
2

∥∥∥∑
n∈A

e(n·)
∥∥∥p−1

2(p−1)
.(2.2)

Here the first inequality sign in (2.1) follows by putting absolute values inside and Cauchy-Schwarz,
the second is Plancherel, and (2.2) uses the majorant property on 2(p− 1) ∈ 2N. Now assume for all
ε > 0 the following condition

(2.3)
∥∥∥∑
n∈A

e(n·)
∥∥∥
2

∥∥∥∑
n∈A

e(n·)
∥∥∥p−1

2(p−1)
≤ CεN

ε
∥∥∥∑
n∈A

e(n·)
∥∥∥p
p
,

with Cε depending only on ε. In view of the preceding, one then has (1.3) for any γ > 0. This
condition, which is of basic importance for most of our work, is basically the reverse of the usual
interpolation inequality. One checks immediately that arithmetic progressions satisfy (2.3). Also,
observe that any frequency set A for which (2.3) holds for all p satisfies (1.3) for all p with γ > 0.
Indeed, this follows inductively from the argument leading up to (2.2) using the majorant property
from the previous stage 2(p−1) to pass to the next stage p. Finally, interpolation is required to obtain
the desired bound for all p (at the cost of N ε). Another case which is covered by this argument, but
not the previous one based on Hausdorff-Young, are multi-dimensional arithmetic progressions. For
example, one easily checks that

(2.4) A = {b+ j1a1 + j2a2 | 0 ≤ j1 < L1, 0 ≤ j2 < L2}

with a1L1 < a2, satisfies ∥∥∥∑
n∈A

e(n·)
∥∥∥p
p
� (L1L2)

p−1

for p > 1. Another interesting case are the squares A = {n2 | 1 ≤ n ≤
√
N}. In this case it is

well-known that the there is a “kink” at p = 4 (see e.g. [B3]),∥∥∥∑
n∈A

e(n·)
∥∥∥
p

≤ CεN
ε+ 1

2 if 2 ≤ p ≤ 4,∥∥∥∑
n∈A

e(n·)
∥∥∥
p

≤ CεN
1− 2

p
+ε

if p ≥ 4,

so that (2.3) holds only for 2 ≤ p ≤ 3. In particular, the argument leading up to (2.2) gives the
(trivial) statement that the majorant property holds at p = 3 for the squares. A nontrivial statement
can be obtained by improving on the use of Plancherel in (2.1). Indeed, it is a well-known fact that

(2.5)
∥∥∥ N∑
n=1

ane(n
2θ)
∥∥∥
4
≤ CεN

ε

(
N∑

n=1

|an|2
) 1

2

⇐⇒

(
N∑

n=1

|f̂(n2)|2
) 1

2

≤ CεN
ε‖f‖

L
4
3 (T)

,
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the second statement being the dual of the first. This can be checked by reducing the L4-norm to
an L2-norm by squaring, and then using Cauchy-Schwarz and the N ε-bound on the divisor function,
see [B3]. We now repeat the argument leading up to (2.2) to conclude the following. Let

P := {
N∑

n=1

ane(n
2θ) | |an| ≤ 1}.

If p = 3k + 1, then one can apply the majorant property at 4
3(p− 1) so that

sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

ane(n
2θ)
∣∣∣p dθ = sup

|an|≤1

N∑
n=1

an

∫ 1

0
e(n2θ)

N∑
k=1

āke(−k2θ)
∣∣∣ N∑
`=1

a`e(`
2θ)
∣∣∣p−2

dθ

≤ sup
g∈P

√
|A|

(
N∑

n=1

∣∣ĝ|g|p−2(n2)
∣∣2) 1

2

≤ sup
g∈P

√
|A| ‖g‖p−1

4
3
(p−1)

(2.6)

≤
∥∥∥ N∑
n=1

e(n2·)
∥∥∥
2

∥∥∥ N∑
n=1

e(n2·)
∥∥∥p−1

4
3
(p−1)

≤ CεN
εN

1
2Np− 5

2 ≤ CεN
εNp−2

≤ CεN
ε
∥∥∥ N∑
n=1

e(n2·)
∥∥∥p
p
.

Here we used (2.5) in (2.6). This implies that for the sequence of squares (1.3) holds with any γ > 0
at p = 7, 13, 19 etc.

Another case of sets A that do not satisfy (2.3) are random subsets A ⊂ [1, N ]. Indeed, we show
below that random sets A which are obtained by selecting each integer 1 ≤ n ≤ N with probability τ
have the property that for p > 1

E
∥∥∥∑
n∈A

e(nθ)
∥∥∥p
p
� τpNp−1 + (τN)

p
2 ,

see Proposition 4.6. The two terms on the right balance at τcrit = N
−1+ 2

p so that it is clear that (2.3)
cannot hold in general. The main objective of the following section is to show that nevertheless,
such random subsets do satisfy (1.3) with large probability. The method to some extent resembles
the calculation from (2.2), but is of course more involved. We rely on a probabilistic lemma from
Bourgain’s work [B1].

It is possible to abstract the arguments below, and then verify that various examples satisfy the
conditions of such an abstract theorem, the most important one being condition (2.3). More precisely,
starting with a deterministic set A, define SN (ω) = {n ∈ A | ξn = 1} where ξn are i.i.d. selector
variables satisfying P[ξn = 1] = τ = 1 − P[ξn = 0]. If, amongst other things, (2.3) holds for A, then
much of what is done in the following section goes through. On the other hand, some improvements
which we obtain below for the case of arithmetic progressions are not easily axiomatized. Moreover,
since we do not have any examples apart from (multi-dimensional) arithmetic progressions, we have
decided against casting this into a more general framework. Thus, we write out the main argument
only for arithmetic progressions. If (2.3) is violated, then our method applies only to certain p or
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after suitable modifications. For example, one can check that the machinery which we develop below
shows that with high probability random subset of the squares satisfy (1.3) at p = 7 for any γ > 0.
This requires invoking the (almost) Λ(4) property of the squares as in (2.6). It seems difficult to
obtain the desired bound for all p in case of the squares.

3 Failure of the majorant property

In order to establish a frequency set A for which the constant in the majorant inequality (1.1) is
growing by a power in N we will need the following

Lemma 3.1. Suppose p > 2 is not an even integer, then there are trigonometric polynomials q and
Q with with coefficients in {0, 1,−1} such that |q̂(n)| = Q̂(n) and

‖q(e2πit)‖p > (1 + δp) ‖Q(e2πit)‖p.

Proof. For m, k ∈ N define polynomials q and Q as follows

q(z) = (1 + zk)(1− zm) and Q(z) = (1 + zk)(1 + zm),

where z = e(t). Let cn be the Fourier coefficients of f(t) = | sinπt|p and define an(p) =
1
π

∫ π
0 (sin t)p e−int dt,

which satisfies the following recurrence formulae:

2ian(p) = an−1(p− 1)− an+1(p− 1) and an−1(p− 1) = i(1 +
n

p
) an(p).

Since cn = a2n(p) a little algebra gives

(3.1) cn+1 =
n− α

n+ 1 + α
cn where α = p/2,

and cn = c̄n = c−n. Note that for F (t) = | cosπt|p we have F̂ (n) = (−1)ncn. By using Plancherel’s
identity and by choosing m, k relatively prime we get

‖q(e2πit)‖pp − ‖Q(e2πit)‖pp = 4p
∫ 1

0
F (kt) f(mt)− F (kt) F (mt) dt

= 4p
∑
n∈Z

( (−1)kn cnm cnk − (−1)mn+kn cnm cnk )

= 4p
∑
n∈Z

(−1)nk cnm cnk (1− (−1)nm)

We choose k even and m = k + 1. Hence only odd n contribute to the latter sum which evaluates to

4p+1
∑

n≥1,n odd

cnm cnk.

By the recursion formula for cn we see that if k,m > p/2 both term in the sum have the same sign.
The lemma follows.
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Theorem 3.2. Suppose p > 2 is an not even integer and N a sufficiently large integer. Then there
exist αp > 0, a frequency set E ⊂ [0, N ] ∩ Z and a sequence εj ∈ {−1, 1} such that

(3.2) ‖
∑
n∈E

εj ei2πnx‖p ≥ Nαp ‖
∑
n∈E

ei2πnx‖p

Proof. The previous Lemma provides a trigonometric polynomial q of degree d > 1 with Fourier
coefficients in {0,−1, 1} whose majorant Q satisfies |q̂(l)| = Q̂(l), for l ∈ Z, and

(3.3) ‖q‖p ≥ (1 + δ) ‖Q‖p.

for some δ > 0. We will inductively construct a finite Riesz product qk(x) =
∏k

j=0 q(mjx) where

mj ∈ Z are randomly chosen in the interval [M j , 2M j ]. Note that by choosing M > dp sufficiently
large the Fourier coefficients of qk are again contained in {0, 1,−1}. We claim that for the majorant
Qk with Q̂k(n) = |q̂k(n)| we have

(3.4) ‖qk‖pp ≥ (1 + δ)k ‖Qk‖pp.

This gives us (3.2) since qk is of degree at most N ≤ 2dMk. Inequality (3.4) will be shown inductively:
Define

fk(x) = |qk(x)|p and gk(x) = |q(mk+1 x)|p.

Note that gk has frequencies in mk+1Z. By Plancherel’s identity we obtain for T > 0

‖qk+1‖pp =
∫ 1

0
fk(x) gk(x) dx = f̂k(0) ĝk(0)+

∑
0<|l|<T

f̂k(mk+1l) ĝk(−mk+1l) +
∑
|l|≥T

f̂k(mk+1l) ĝk(−mk+1l)

= Ak + Bk + Ck

We have by induction
Ak = ‖qk‖pp ‖q‖pp ≥ (1 + δ)k+p ‖Qk‖pp ‖Q‖pp.

To estimate Ck, note that F = |q|p is at least twice differentiable. Therefore |n2 F̂ (n)| ≤ c1, with
c1 depending only on d and p, hence |ĝk(−mk+1l)| ≤ c1/l

2 and by Cauchy-Schwarz and Parseval’s
identity we get

C2
k ≤ c2

T 3

∑
|l|>T

|f̂k(mk+1l)|2 ≤
c2
T 3

∫ 1

0
|qk(x)|2p dx ≤ c2 d2pk

T 3
,

where we used ‖qk‖∞ ≤ dk. To estimate Bk we apply Cauchy-Schwarz

B2
k ≤ c23

∑
0<|l|<T

|f̂k(mk+1l)|2,

where c3 is the L2-norm of F , i.e. only dependent on d and p. We will need to specify n = mk+1. To
do this, let I be the set of integers in [Mk+1, 2Mk+1]. Then with Bk = Bk(n)

1

|I|
∑
n∈I

|Bk(n)|2 ≤ c23
1

|I|
∑

n∈I,0<|l|<T

|f̂k(nl)|2 ≤ c23
1

|I|
∑

0<m<2TMk+1

d(m) |f̂k(m)|2
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with R = 2TMk+1 and d(m) is the number of divisors of m, which is at most of order ec logR/ log logR ≤
cεR

ε. By choosing T = M100pk and since |I| = Mk+1 we may bound the later term by

c23 cε′

Mk+1
M ε′k ‖fk‖22

for all ε′ > 0. Since

(3.5) ‖fk‖22 =
∫ 1

0
|qk(x)|2p dx ≤ d2kp,

by pigeonholing we find n ∈ I such that

(3.6) Bk ≤ c̃ε′

(
d2p

M

) k
2

M εk ≤ M−k/4

provided we chose M sufficiently large. By collecting the estimates for Ak, Bk and Ck by adjusting
M (to absorb c2) we get:

‖qk+1‖pp ≥ (1 + δ)k+p ‖Qk‖pp ‖Q‖pp − 2M−k/4(3.7)

≥ (1 + δ)k+p (1− o(1)) ‖Qk‖pp ‖Q‖pp,(3.8)

where the o-term is refers to M → ∞. We can perform the same analysis for Qk+1. We only need to
possibly modify the choice of mk+1. However, since (3.5) holds for q replaced by Q (in the definition
of f and g) we can choose mk+1 such that, say, the sum of the moduli of the Bk-term’s for qk+1 and
Qk+1 satisfy the above bound as well. Hence,

‖Qk+1‖pp ≤ (1 + o(1)) ‖Qk‖pp ‖Q‖pp

and therefore

‖qk+1‖pp ≥ (1 + δ)k+p (1− o(1)) ‖Qk‖pp ‖Q‖pp ≥ (1 + δ)k ‖Qk+1‖pp.

4 Random subsets have the majorant property

4.1 Random sums over asymmetric Bernoulli variables

We first dispense with some simple technical statements about the behavior of random sums with
asymmetric Bernoulli variables as summands. They are definitely standard, but lacking a precise
reference we prefer to present them.

Lemma 4.1. Let ηj be i.i.d. variables so that P[ηj = 1− τ ] = τ , P[ηj = −τ ] = 1− τ . Here 0 < τ < 1

is arbitrary. Let N ≥ 1 and {aj}Nj=1 ∈ C be given. Define σ2 = τ(1− τ)
∑N

j=1 |aj |2. Then for λ > 0,

P
[∣∣∣ N∑

j=1

ajηj

∣∣∣ > λσ
]
≤ 4e−

λ2

8
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provided

(4.1) max
1≤j≤N

λ|aj | ≤ 4σ.

Proof. Assume first that all aj ∈ R. Then for any t > 0

P
[ N∑
j=1

ajηj > λσ
]
≤ e−tλσ E exp

(
t

N∑
j=1

ajηj

)
(4.2)

= e−tλσ
N∏
j=1

[
τe(1−τ)taj + (1− τ)e−τtaj

]
(4.3)

Next, we claim that

(4.4) τe(1−τ)x + (1− τ)e−τx ≤ exp(2τ(1− τ)x2) for all |x| ≤ 1.

Observe that this property fails for x = τ−
1
2 . To prove this, set

φτ (x) = exp(2τ(1− τ)x2)− τe(1−τ)x − (1− τ)e−τx.

By symmetry it suffices to consider the case 0 ≤ x ≤ 1 and to show that φτ ≥ 0 there. Clearly,

φ′
τ (x) = τ(1− τ)

[
4x exp(2τ(1− τ)x2)− e(1−τ)x + e−τx

]
≥ τ(1− τ)

[
4x− e(1−τ)x + e−τx

]
(4.5)

Differentiating the expression in brackets yields

4− (1− τ)e(1−τ)x − τe−τx ≥ 4− (1− τ)e(1−τ)x − τe(1−τ)x ≥ 4− e > 0

for all 0 ≤ x ≤ 1. It follows that φ′
τ (x) ≥ 0 for 0 ≤ x ≤ 1 and since φτ (0) = 0 we also have φτ (x) ≥ 0

for 0 ≤ x ≤ 1, as desired. Inserting (4.4) into (4.3) gives

P
[ N∑
j=1

ajηj > λσ
]
≤ min

t>0
e−tλσ exp(2t2σ2) = e−

λ2

8

provided for the minimizing choice of t = t0 one has maxj |t0 aj | ≤ 1. But t0 =
λ
4σ and this condition

therefore reads

max
1≤j≤N

|λ||aj |
4σ

≤ 1,

which is precisely (4.1). Evidently, the same bound also holds for deviations less than −λσ, which
gives 2e−λ2/8 as an upper bound on the large deviation probability in the real case. Finally, if an ∈ C,
then one splits into real and complex parts.

Lemma 4.1 immediately leads to the following version of the Salem–Zygmund inequality for asym-
metric variables.
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Corollary 4.2. With ηn and σ as in the previous lemma

P
[
sup
θ∈T

∣∣∣ N∑
n=1

an ηn e(nθ)
∣∣∣ > 20σ

√
logN

]
≤ 4N−8

for any an ∈ C provided the following conditions hold:

sup
1≤n≤N

10|an|2 logN ≤ σ2 = τ(1− τ)

N∑
k=1

|ak|2

10 ≤ τ(1− τ)N logN.(4.6)

Proof. Let {θj}N
2

j=1 ⊂ T be a N−2-net. Denote

TN,ω(θ) :=

N∑
n=1

an ηn(ω) e(nθ).

By using T ′
N,ω(θ) = TN,ω ∗ D′

N (θ), where DN denotes the Dirichlet kernel, Cauchy-Schwarz and
Parseval’s identity gives

min
j

|TN,ω(θ)− TN,ω(θj)| ≤ N−2‖T ′
N,ω‖∞

≤ N−2‖TN,ω‖2‖D′
N‖2 ≤ N−2

( N∑
n=1

|an|2
) 1

2
2N

3
2

=
2σN− 1

2√
τ(1− τ)

≤ 10σ
√

logN.

The final inequality here follows from our assumption (4.6). Therefore, by Lemma 4.1,

P
[
sup
θ∈T

∣∣∣ N∑
n=1

an ηn e(nθ)
∣∣∣ > 20σ

√
logN

]
≤

N2∑
j=1

P
[∣∣∣ N∑

n=1

an ηn e(nθj)
∣∣∣ > 10σ

√
logN

]
≤ 4N2 exp(−100 logN/8) ≤ 4N−8,

which is precisely the bound claimed in the lemma. The first condition in (4.6) ensures that (4.1)
holds.

In the proof of Theorem 4.4 and 4.12 we shall need to know the typical size of the easier norm in (4.18).
We determine this norm in the following lemma.

Lemma 4.3. Let ξj be selector variables as above with τ = N−δ, 0 < δ < 1 fixed. Let p ≥ 2 and
define

Ip,N (ω) =

∫ 1

0

∣∣∣ N∑
n=1

ξn(ω)e(nθ)
∣∣∣p dθ.
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Then for some constants Cp,

C−1
p

(
τpNp−1 + (τN)

p
2

)
≤ E Ip,N ≤ Cp

(
τpNp−1 + (τN)

p
2

)
.

Moreover, there is some small constant cp such that

P
[
Ip,N ≤ cp(τ

pNp−1 + (τN)
p
2 )
]
→ 0

as N → ∞.

Proof. Let ηn(ω) = ξn(ω)− τ , so that E ηn = 0 and E η2n = τ(1− τ). Then

Ip,N (ω) .
∫ 1

0

∣∣∣ N∑
n=1

τe(nθ)
∣∣∣p dθ + ∫ 1

0

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ

. τpNp−1 +

∫ 1

0

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ.(4.7)

One now checks that

E
∫ 1

0

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ ≤ Cp (Nτ(1− τ))

p
2 .

This can be verified by expanding the norm for even p and then interpolating. Indeed,

E
∫ 1

0

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣2k dθ = E

∫ 1

0

∣∣∣ N∑
n1,...,nk=1

ηn1 . . . ηnk
e((n1 + . . .+ nk)θ)

∣∣∣2 dθ
=
∑
n

E
∣∣∣ ∑
n1+...+nk=n

ηn1 . . . ηnk

∣∣∣2 = ∑
n1+...+nk=m1+...+mk

E [ηn1 . . . ηnk
ηm1 . . . ηmk

]

≤ Ck

k∑
r=1

N∑
n1,...,nr=1

s1+...+sr=2k, si≥2

E |ηn1 |s1 · . . . · E |ηnr |sr(4.8)

≤ Ck

k∑
r=1

N r(τ(1− τ))r ≤ Ck(Nτ(1− τ))k.(4.9)

The constants in (4.8) and (4.9) are of a combinatorial nature and not necessarily the same. The
relevant point in (4.8) is that si ≥ 2 which is due to independence and E ηj = 0. In particular, si ≥ 2
implies the important fact r ≤ k. Moreover, to pass to the last line we used that for every positive
integer s ≥ 2

τ(1− τ) ≥ E ηsj = τ(1− τ)(τ s−1 + (1− τ)s−1) ≥ 22−sτ(1− τ).

To obtain the lower bound on the expectation, one splits the integral in θ into the region where
the Dirichlet kernel dominates the mean zero random sum and vice versa. More precisely, with
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h =
√
τN−1 = N− 1+δ

2 ,

Ip,N &
∫
|θ|< 1

N

∣∣∣ N∑
n=1

τe(nθ)
∣∣∣p dθ − ∫

|θ|< 1
N

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ

+

∫ 1−h

h

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ − ∫ 1−h

h

∣∣∣ N∑
n=1

τe(nθ)
∣∣∣p dθ

& τpNp−1 − C

∫
|θ|< 1

N

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ + ∫

|θ|>h

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ − Cτp h1−p.(4.10)

According to Corollary 4.2, the first integral in (4.10) is

(4.11) . N−1(logN)
p
2 (τ(1− τ)N)

p
2

up to a negligible probability. For the second, one has because of p ≥ 2∫ 1−h

h

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ ≥

∫ 1

0

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ − ∫

|θ|≤h

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ

≥

(∫ 1

0

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣2 dθ)

p
2

−
∫

|θ|≤h

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ

≥

(
N∑

n=1

η2n

) p
2

− C h (Nτ logN)
p
2(4.12)

where the last term in (4.12) is obtained from Corollary 4.2. Using p ≥ 2 again,

E

(
N∑

n=1

η2n

) p
2

≥

(
E

N∑
n=1

η2n

) p
2

≥
(
Nτ(1− τ)

) p
2
.

In fact, Lemma 4.1 gives the following more precise estimate:

(4.13) P
[∣∣∣ N∑

n=1

(η2n − E η2n)
∣∣∣ ≥ λ

√
N E (|η21 − E η21|2)

]
≤ 4e−λ2/8

provided the conditions (4.1) hold. One checks that E (|η21 − E η21|2) � τ(1 − τ). Hence it follows
from (4.13) that for large N

P
[ N∑
n=1

η2n ≤ 1

2
E

N∑
n=1

η2n =
1

2
Nτ(1− τ)

]
≤ P

[∣∣∣ N∑
n=1

η2n − E
N∑

n=1

η2n

∣∣∣ ≥ 1

2
Nτ(1− τ)

]
≤ P

[∣∣∣ N∑
n=1

η2n − E
N∑

n=1

η2n

∣∣∣ ≥ logN
√

Nτ(1− τ)
]
≤ 4e−(logN)2/8,
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since with our choice of parameters (4.1) hold for large N . Inserting this bound into (4.12) now yields

(recall that h =
√
τN−1 = N− 1+δ

2 )∫ 1−h

h

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ ≥

(
1

2
Nτ(1− τ)

) p
2

− C N− 1+δ
2 (Nτ logN)

p
2 & (Nτ)

p
2

up to negligible probability. In view of this bound and (4.11), one obtains from (4.10) that

Ip,N & τpNp−1 − C

∫
|θ|< 1

N

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ + ∫

|θ|>h

∣∣∣ N∑
n=1

ηne(nθ)
∣∣∣p dθ − Cτp h1−p

& τpNp−1 + (Nτ)
p
2

up to negligible probability. To remove the final term in the first line we used that (Nτ)
p
2 � τph1−p

which follows from our choice of h provided N is big.

4.2 Random sets satisfy the majorant inequality (1.3)

In this section we will show

Theorem 4.4. Let 0 < δ < 1 be fixed. For every positive integer N we let ξj = ξj(ω) be i.i.d. variables
with P[ξj = 1] = τ , P[ξj = 0] = 1− τ where τ = N−δ. Define a random subset

S(ω) = {j ∈ [1, N ] | ξj(ω) = 1}.

Then for every ε > 0 and p ≥ 2 one has

(4.14) P
[
sup

|an|≤1

∥∥∥ ∑
n∈S(ω)

ane(nθ)
∥∥∥
Lp(T)

≥ N ε
∥∥∥ ∑
n∈S(ω)

e(nθ)
∥∥∥
Lp(T)

]
→ 0

as N → ∞.

The proof of Theorem 4.4 relies on Slepian’s Lemma and ideas in Bourgain’s paper [B4]. In the
next section we will present a variant of Theorem 4.4 which requires additional assumptions on the
exponent δ as well as on p. However, this second method will lead us later to remove the N ε-term in
(4.14) in certain cases, for example when p = 3. This improvement (which we believe should hold in
general, i.e. for 2 < p /∈ 2N) relies on a method developed in Bourgain’s work on the solution of the
Λ(p) problem, see [B1] and [B2]. In fact, in this situation we can avoid several complications that
arose in Bourgain’s work. Notice that Theorem 4.4 is implied by Bourgain’s existence theorem of
Λ(p) sets provided δ ≥ 1− 2

p , but not for δ < 1− 2
p . Indeed, in the former case the random set S will

typically have cardinality N
2
p or smaller, and such sets were shown by Bourgain [B1] to be Λ(p)-sets

with large probability.
Let ξj = ξj(ω), 1 ≤ j ≤ N , be i.i.d. variables with P[ξj = 1] = τ , P[ξj = 0] = 1−τ where τ ∈ (0, 1).

Define a random subset
S(ω) = {j ∈ [1, N ] | ξj(ω) = 1}.

We sometimes drop the argument ω and write simply S for S(ω). The following result is a discretized
version of a result shown by Bourgain in [B4].
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Proposition 4.5. Let M ∈ N,M < N, and T (θ) =
∑

n∈S(ω) ane(nθ) be a trigonometric polynomial
with frequencies in S(ω). Then there exists C > 0 independent of M and N such that

(4.15) E ω sup
|an|≤1

sup
|I|≤M

√∑
j∈I

|T ( j
N

)|2 ≤ τN + C M logN,

where the second supremum is over all integer sets I ⊂ [0, N) with |I| ≤ M . In particular, we have
for c1 sufficiently large

(4.16) E ω sup
|an|≤1

√√√√ ∑
|T ( j

N
)|2≥c1τN logN

|T ( j
N

)|2 ≤ C τN.

To see that (4.16) follows from (4.15), we choose M = τN/ logN and note that for c1 > 0 suffi-
ciently large the integer set X = {j ∈ [0, N) | |T ( j

N )|2 ≥ c1τN logN} is of size at most M . Note that
otherwise, X would contains a subset I of size |I| = M for which (4.15) implies:

√
M c1 τN logN ≤

(C + 1) τN , i.e. c1 ≤ (C + 1)2.
For convenience we will include below Bourgain’s proof of Proposition 4.5. With the bound on

the expected size for Dirichlet kernels in Lp given by Lemma 4.3 we are prepared to the
Proof of Theorem 4.4: By the Marcinkiewicz-Zygmund inequality, see [Zyg, p.28], the Lp-norm

(for p > 1) of a trigonometric polynomial of degree N is comparable with the Riemann sum over N
equidistant points, i.e. for f(θ) =

∑
n∈S(ω) ane(nθ) with |an| ≤ 1 we have

‖
∑

n∈S(ω)

ane(nθ)
∥∥∥p
Lp(T)

≈ 1

N

N−1∑
j=0

|f( j
N

)|p

with hidden constants depending on p but independent of N . We divide the Riemann sum into I =
{j | |f( j

N )|2 ≥ c1τN logN} and its complement J in [0, N)∩Z. Fix α, β > 0 with α(p− 2)+β = p/2.
Since ‖f‖∞ ≤ |S| and the expected size of S is τN we find ΩN ⊂ Ω with P(ΩN ) → 1, as N → ∞,
such that ‖f‖∞ ≤ (logN)ατN . Also, by (4.16) we find Ω′

N ⊂ ΩN with P(Ω′
N ) → 1 such that for

ω ∈ Ω′
N we have

∑
j∈I |f( j

N )|2 ≤ (logN)β(τN)2. Hence, for ω ∈ Ω′
N , we get

1

N

N−1∑
j=0

|f( j
N

)|p =
1

N

∑
j∈I

|f( j
N

)|p−2 |f( j
N

)|2 +
1

N

∑
j∈J

|f( j
N

)|p

≤ (logN)α(p−2)(τN)p−2 1

N

∑
j∈I

|f( j
N

)|2 + (c1τN logN)
p
2

≤ C (logN)
p
2
(
τpNp−1 + (τN)

p
2
)

Hence, by Lemma 4.3 we find

‖
∑

n∈S(ω)

ane(nθ)
∥∥∥p
Lp(T)

≤ C (logN)
p
2 E Ip,N
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and the theorem follows with a possibly smaller subset of Ω′
N whose probability still approaches 1 as

N → ∞. �
Proof of Proposition 4.5. We need to show that the expectation

L := E ω sup
{|an|≤1, I}

(∑
m∈I

∣∣ N∑
j=1

aj ξj(ω) e(jm/N)
∣∣2)1/2 ≤ C τN.

Here the supremum is over all sets I with |I| ≤ τN/ logN . By `2(I)-duality we may express the
left-hand side by

E ω sup
{|an|≤1, I}

sup
‖b‖`2(I)=1

∣∣ N∑
j=1

aj ξj(ω)
∑
m∈I

bme(jm/N)
∣∣ = E ω sup

I, ‖b‖`2(I)=1

N∑
j=1

ξj(ω)
∣∣∑
m∈I

bme(jm/N)
∣∣.

Write ξj = ηj + τ , i.e. the η′js have vanishing expectation. It follows that

L ≤ τ sup
I,b

N∑
j=1

∣∣∑
m∈I

bme(jm/N)
∣∣ + E ω sup

I,b

N∑
j=1

ηj(ω)
∣∣∑
m∈I

bme(jm/N)
∣∣ =: L1 + L2

By using the (`1, `∞)-duality and Cauchy-Schwarz the term L1 is bounded by

τ sup
b, I

sup
|cj |≤1

∣∣ N∑
j=1

cj
∑
m∈I

bm e(jm/N)
∣∣ ≤ τ sup

|cj |≤1

( N∑
m=1

∣∣ N∑
j=1

cj e(jm/N)
∣∣2)1/2.

So, Parseval’s identity gives L2
1 ≤ τ2N sup|cj |≤1

∑N
k=1 |ck|2 ≤ (τN)2. To bound the term L2 we first

note that for each choice of εk = ±1 and each bounded sequence of complex-valued functions Ak(t)
one has

(4.17) E ω sup
t

∣∣ N∑
k=1

ηk(ω) |Ak(t)|
∣∣ ≤ 2E ω sup

t

∣∣ N∑
k=1

εk ηk(ω) |Ak(t)|
∣∣

To see this, set X = {k | εk = 1} and Y = Xc, the complement of X. Then

E ω sup
t

∣∣ N∑
k=1

ηk(ω) |Ak(t)|
∣∣ ≤ E ω sup

t

∣∣∑
k∈X

ηk(ω) |Ak(t)|
∣∣ + E ω sup

t

∣∣∑
k∈Y

ηk(ω) |Ak(t)|
∣∣

Since E ω′ηk = 0 we may rewrite the first term as

E ω sup
t

∣∣E ω′
(∑
k∈X

εk ηk(ω) |Ak(t)| +
∑
k∈Y

εk ηk(ω
′) |Ak(t)|

) ∣∣,
which is bounded by

E ω E ω′ sup
t

∣∣∑
k∈X

εk ηk(ω) |Ak(t)| +
∑
k∈Y

εk ηk(ω
′) |Ak(t)|

∣∣ = E ω sup
t

∣∣ N∑
k=1

εk ηk(ω) |Ak(t)|
∣∣,
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where we used independence. Exchanging X and Y the second term is seen to be bounded by the
same expression, i.e. (4.17) holds. Since (4.17) remains true if we average over εk we obtain for L2

the bound

L2 ≤ 2E ε E ω sup
I,b

∣∣ N∑
j=1

εj ηj(ω)
∣∣∑
m∈I

bme(jm/N)
∣∣∣∣.

We may now employ the contraction principle (see [T, p.222]) to majorize the above Rademacher
sequence εj by Gaussian random variables gj , i.e. we have

L2 ≤ 2E ω′ E ω sup
I,b

∣∣ N∑
j=1

gj(ω
′) ηj(ω)

∣∣∑
m∈I

bme(jm/N)
∣∣∣∣

By Slepian’s Lemma (see [T, p.222]) for Gaussian processes we can bound right-hand side by

C E ω′ E ω sup
I,b

∣∣ N∑
j=1

gj(ω
′) ηj(ω)

∑
m∈I

bme(jm/N)
∣∣.

Hence, by evaluating the supremum over ‖b‖`2(I) = 1 we find

L2 ≤ C E ω′ E ω

(∑
m∈I

∣∣ N∑
j=1

gj(ω
′) ηj(ω) e(jm/N)

∣∣2 )1/2
≤ C sup

I

√
|I| E ω E ω′ sup

1≤m≤N

∣∣ N∑
j=1

gj(ω
′) ηj(ω) e(jm/N)

∣∣
By the Salem-Zygmund’s inequality [SZ] for Gaussian Fourier series we finally get

L2 ≤ C
(
τN/ logN

)1/2
(logN)1/2 E ω

( N∑
j=1

ηj(ω)
2
)1/2

= C τN.

Hence L ≤ C τN . �

4.3 Suprema of random processes

In this section we will first derive a proof of the following somewhat weaker version of Theorem 4.4.

Proposition 4.6. Let 0 < δ < 1 be fixed. For every positive integer N we let ξj = ξj(ω) be
i.i.d. variables with P[ξj = 1] = τ , P[ξj = 0] = 1− τ where τ = N−δ. Define a random subset

S(ω) = {j ∈ [1, N ] | ξj(ω) = 1}.

Then for every ε > 0 and 4 ≥ p ≥ 2 one has

(4.18) P
[
sup

|an|≤1

∥∥∥ ∑
n∈S(ω)

ane(nθ)
∥∥∥
Lp(T)

≥ N ε
∥∥∥ ∑
n∈S(ω)

e(nθ)
∥∥∥
Lp(T)

]
→ 0

as N → ∞. Moreover, under the additional restriction δ ≤ 1
2 , (4.18) holds for all p ≥ 4.
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For a proof of Theorem 4.6 as well as for its improvements we now collect the statements from
Bourgain’s paper that we will need. The first is Lemma 1 from [B1] with q0 = 1. In fact, Bourgain’s
lemma is slightly stronger because of certain log 1

τ -factors. While these factors are important for
his purposes, they play no role in our argument. We present the proof for the reader’s convenience,
following Bourgain’s original argument. Another proof was found by Ledoux and Talagrand [LT] which
is close to the ideology surrounding Dudley’s theorem on suprema of Gaussian processes. While their
point of view is perhaps more conceptual, we have found it advantageous to follow [B1]. Throughout,

if x ∈ RN , then |x| = |x|`2N =
(∑N

j=1 x
2
j

) 1
2
is the Euclidean norm. Secondly, N2(E , t) refers to the

L2-entropy of the set E at scale t. Recall that this is defined to be the minimal number of L2-balls of
radius t needed to cover E .

Lemma 4.7. Let E ⊂ RN
+ , B = supx∈E |x|, and ξj be selector variables as above with P[ξj = 1] = τ ,

P[ξj = 0] = 1− τ , and 0 < τ < 1 arbitrary. Let 1 ≤ m ≤ N . Then

E sup
x∈E,|A|=m

[∑
j∈A

ξj xj

]
. (τm+ 1)

1
2B +

∫ B

0

√
logN2(E , t) dt

where N2 refers to the L2 entropy.

Proof. Let Ek be minimal 2−k-nets for E with 2−k ≤ B. Let B = 2−k0 . Then every x ∈ E can be
written as

x = xk0 +
∞∑

k=k0

(xk+1 − xk) = xk0 +
∞∑

k=k0

2−k+1yk

where xk ∈ Ek for every k ≥ k0. We can and do set xk0 = 0. Now, yk ∈ Fk where diam(Fk) ≤ 1 and
#(Fk) ≤ #(Ek) ·#(Ek+1). Hence

(4.19) log #Fk ≤ C log #Ek+1,

and thus

(4.20) E sup
x∈E,|A|=m

[∑
j∈A

ξj xj

]
≤
∑
k≥k0

2−k+1 E sup
y∈Fk, |A|≤m

∑
i∈A

ξi|yi|.

Now fix some k ≥ k0 and write F instead of Fk. Moreover, replacing every vector y = {yj}Nj=1 ∈ F
with the vector {|yi|}Ni=1, we may assume that F ⊂ RN

+ . Note that this changes neither the diameter
nor the cardinality bound of F . With 0 < ρ1 < ρ2 to be determined, one has∑

i∈A
ξiyi ≤

∑
yi≥ρ2

yi +
∑

i∈A, yi≤ρ1

yi +
∑

ρ1<yi<ρ2

ξi yi ≤ ρ−1
2

∑
yi≥ρ2

y2i +mρ1 +
∑

ρ1<yi<ρ2

ξi yi.
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Let q = 1 + blogFc. Since |y| ≤ 1, one concludes that

E sup
y∈F , |A|≤m

∑
i∈A

ξiyi ≤ ρ−1
2 +mρ1 + E sup

y∈F

∑
ρ1<yi<ρ2

ξi yi

. ρ−1
2 +mρ1 + E

∑
y∈F

( ∑
ρ1<yi<ρ2

ξi yi

)q 1
q

(4.21)

. ρ−1
2 +mρ1 +

∑
y∈F

E
( ∑
ρ1<yi<ρ2

ξi yi

)q 1
q

(4.22)

. ρ−1
2 +mρ1 + (#F)

1
q sup
y∈F

[
E
( ∑
ρ1<yi<ρ2

ξi yi

)q] 1
q

(4.23)

. ρ−1
2 +mρ1 + sup

|y|≤1

∥∥∥ ∑
ρ1<yi<ρ2

ξi(ω) yi

∥∥∥
Lq(ω)

.(4.24)

Here (4.21) follows from the embedding `q(F) ↪→ `∞(F), (4.22) follows from Hölder’s inequality, and
to pass from (4.23) to (4.24) one uses that

(#F)
1
q = exp[(log#F)/q] ≤ e

by our choice of q = 1 + blogFc. To control the last term in (4.24), we need the following simple
estimate, see Lemma 2 in [B1]. By the multinomial theorem (for any positive integer q),

E
[ n∑
j=1

ξj

]q
=

∑
q1+...+qn=q

(
q

q1, . . . , qn

)
E ξq11 · . . . · E ξqnn

=

q∑
`=1

∑
1≤i1<i2<...<i`≤n

∑
qi1+...+qi`=q
qi1≥1,...,qi`≥1

(
q

qi1 , . . . , qi`

)
τ `

≤
q∑

`=1

n`

`!
`qτ ` ≤

q∑
`=1

(
q

`

)
qq−` `

q

q!
(nτ)` ≤

q∑
`=1

(
q

`

)
qq−`(eτn)`

≤ (q + eτn)q.(4.25)

It is perhaps more natural (and also more precise) to estimate qth moments by means of the Bernoulli
law

E
[ n∑
j=1

ξj

]q
=

n∑
`=0

(
n

`

)
`qτ `(1− τ)n−`.

But we have found the approach leading to (4.25) more flexible since it also applies to non Bernoulli
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cases. Continuing with the final term in (4.24) one concludes from (4.25) that

sup
|y|≤1

∥∥∥ ∑
ρ1<yi<ρ2

ξi(ω) yi

∥∥∥
Lq(ω)

≤ 2
∑

ρ−2
2 <2j<ρ−2

1

2−
j
2

∥∥∥ 2j∑
i=1

ξi(ω)
∥∥∥
Lq(ω)

(4.26)

≤ 2
∑

ρ−2
2 <2j<ρ−2

1

2−
j
2 (q + eτ2j) . qρ2 + τρ−1

1 .(4.27)

Inserting this bound into (4.24) and setting ρ1 =
√

τ/m and ρ2 = q−
1
2 yields

E sup
y∈F , |A|≤m

∑
i∈A

ξiyi .
√
mτ +

√
q .

√
mτ + 1 +

√
log#F .

The lemma now follows in view of (4.19) and (4.20).

4.4 Entropy bounds

As in [B1] we will need bounds on certain covering numbers, also called entropies. We recall those
bounds starting with the so called “dual Sudakov inequality” for the reader’s convenience. More on
this can be found in Pisier [P] and Bourgain, Lindenstrauss, Milman [BLM], Section 4. Consider Rn

with two norms, the Euclidean norm | · | and some other (semi)norm ‖ · ‖. We set X = (Rn, ‖ · ‖) and
denote the unit ball in this space by BX , whereas the Euclidean unit ball will be Bn. As usual, for
any set U ⊂ Rn and t > 0 one sets

(4.28) E(U,BX , t) := inf
{
N ≥ 1 | ∃ xj ∈ Rn, 1 ≤ j ≤ N, U ⊂

N∪
j=1

(xj + tBX)
}
.

There are two closely related quantities, namely

Ẽ(U,BX , t) := inf
{
N ≥ 1 | ∃ xj ∈ U, 1 ≤ j ≤ N, U ⊂

N∪
j=1

(xj + tBX)
}

D(U,BX , t) := sup
{
M ≥ 1 | ∃ yj ∈ U, 1 ≤ j ≤ M, ‖yj − yk‖ ≥ t, j 6= k

}
.(4.29)

There are the following comparisons between these quantities:

(4.30) D(U,BX , t) ≥ Ẽ(U,BX , t) ≥ E(U,BX , t) ≥ D(U,BX , 2t)

The final inequality holds because every covering of U by arbitrary t-balls gives rise to a covering by 2t-
balls with centers in U . To see that E(U,BX , t) ≥ D(U,BX , 2t), let {yj}Mj=1 ⊂ U be 2t-separated and

U ⊂
∪N

i=1(xi + tBX). Then every yj ∈ xi + tBX for some i = i(j). Moreover, j 6= k =⇒ i(j) 6= i(k).
Hence N ≥ M .
The “dual Sudakov inequality” Lemma 4.8 bounds E(Bn, BX , t) in terms of the Levy mean

(4.31) MX :=

∫
Sn−1

‖x‖ dσ(x),
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where σ is the normalized measure on Sn−1. Alternatively, one has

MX = αn(2π)
−n

2

∫
Rn

e−
|x|2
2 ‖x‖ dx(4.32)

MX = αn

∫
Ω

∥∥∥ n∑
i=1

gi(ω)~ei

∥∥∥ dP(ω),(4.33)

where

αn =
Γ
(
n
2

)
Γ
(
n+1
2

)√
2
� n− 1

2

and gi are i.i.d. standard normal variables, and ~ei is an ONS. The probabilistic form (4.33) is of course
just a restatement of (4.32), whereas the latter can be obtained from the definition (4.31) by means
of polar coordinates. The following lemma is due to Pajor and Tomczak-Jaegerman [PT-J] but the
proof given below is due to Pajor and Talagrand, see [BLM].

Lemma 4.8. For any t > 0

(4.34) logE(Bn, BX , t) ≤ Cn
(MX

t

)2
,

where C is an absolute constant.

Proof. Let {xi}Ni=1 ⊂ Bn, ‖xi − xj‖ ≥ t for i 6= j and N maximal. Then E(Bn, BX , t) ≤ N . Let

µ(dx) = (2π)−
n
2 e−

|x|2
2 dx. Then by definition (4.31),

(4.35) µ(‖x‖ > 2MXα−1
n ) <

1

2
=⇒ µ(‖x‖ ≤ 2MXα−1

n ) >
1

2
.

Moreover, {xi + 1
2 tBX}Ni=1 and therefore also {yi + 2MXα−1

n BX}Ni=1 have mutually disjoint interiors,
where we have set yi = 4MX(tαn)

−1xi. Now, by symmetry of BX and convexity of e−u,

µ(yi + 2MXα−1
n BX) = (2π)−

n
2

∫
2MXα−1

n BX

e−|y−yi|2/2 dy

= (2π)−
n
2

∫
2MXα−1

n BX

1

2

[
e−|y−yi|2/2 + e−|y+yi|2/2

]
dy

≥ (2π)−
n
2

∫
2MXα−1

n BX

e−(|y−yi|2+|y+yi|2)/4 dy

= (2π)−
n
2

∫
2MXα−1

n BX

e−(|y|2+|yi|2)/2 dy ≥ 1

2
e−|yi|2/2,

where the last step follows from (4.35). Since |yi| ≤ 4MX(tαn)
−1,

µ(yi + 2MXα−1
n BX) ≥ 1

2
exp

(
− 1

2
(4MX)2(tαn)

−2
)
.
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Hence

1 ≥
N∑
i=1

µ(yi + 2MXα−1
n BX) ≥ 1

2
N exp

(
− (4MX)2(tαn)

−2
)
,

and the lemma follows since αn � n− 1
2 .

Observe that (4.34) is a poor bound as t → 0. Indeed, rather than the exp(t−2) behavior exhibited
by (4.34) the true asymptotics is t−n as t → 0. The point of Lemma 4.8 is to relate the size of t to
both MX and n. This is best illustrated by some standard examples.

• Firstly, take X = `1n. In that case,

α−1
n MX = (2π)−

n
2

∫
Rn

n∑
i=1

|xi|e−
|x|2
2 dx =

n√
2π

∫ ∞

−∞
|x1|e−

x21
2 dx1 =

2n√
2π

.

Therefore, MX �
√
n. By (4.34),

sup
n

E(Bn, B`1n
, n) ≤ C.

This bound is somewhat wasteful. Indeed, since
√
nB`1n

⊃ Bn, one actually has

sup
n

E(Bn, B`1n
,
√
n) ≤ C.

The reason for this “overshoot” is that the major contribution to MX comes from the corners
of B`1n

. On the other hand, these corners do not determine the smallest r for which rBX ⊃ Bn.

• Secondly, consider X = `∞n . Using (4.33),

α−1
n MX = E sup

1≤i≤n
|gi| �

√
log n,

where the latter bound is a rather obvious and well-known fact. Hence

MX �
√

log n

n

which implies via (4.34) that

sup
n

E(Bn, B`∞n ,
√

logn) ≤ C.

This is the correct behavior up to the log n-factor since Bn ⊂ B`∞n . In contrast to the previous
case, the bulk of the contribution to MX comes from that part of B`∞n that is also the most
relevant for the covering of the Euclidean ball.
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• Finally, and most relevantly for our purposes, identify Rn with the space of trigonometric
polynomials with real coefficients of degree n, i.e.,

(4.36) Rn '
{ n∑
j=1

aje(jθ) | aj ∈ R
}
.

Furthermore, define ‖ · ‖ = ‖ · ‖Lq(T) where q ≥ 2 is fixed. Then

MX = αn

∫
Ω

∥∥∥ n∑
j=1

gj(ω)e(jθ)
∥∥∥
Lq(T)

dP(ω)

= αn E
∫
Ω

∥∥∥ n∑
j=1

±gj(ω)e(jθ)
∥∥∥
Lq(T)

dP(ω)(4.37)

≤ Cαn
√
q

∫
Ω

( n∑
j=1

g2j (ω)
) 1

2
dP(ω)(4.38)

≤ Cαn
√
q

∫
Ω

n∑
j=1

g2j (ω) dP(ω)

 1
2

= Cαn
√
q
√
n ≤ C

√
q.

In (4.37) the expectation E refers to the random and symmetric choice of signs ±, whereas the√
q-factor in (4.38) is due to the fact that the constant in Khinchin’s inequality grows like

√
q.

Hence

(4.39) logE(Bn, BX , t) ≤ C qnt−2

in this case.

The proof of Proposition 4.6 requires estimating Nq(PA, t) := E(PA, BLq(T), t). Here

PA :=
{∑

n∈A
ane(nθ)

∣∣∣ |a| = |a|`2N ≤ 1
}

where A ⊂ [1, N ]. Invoking (4.39) leads to

(4.40) logNq(PA, t) ≤ Cq|A| t−2.

This bound is basically optimal when t ∼ 1, but it can be improved for very small and very large t.

Corollary 4.9. For q ≥ 2 and any A ⊂ [1, N ]

(4.41) logNq(PA, t) ≤ C q|A|
[
1 + log

1

t

]
if 0 < t ≤ 1

2
.
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Proof. Let m = |A|. Thus 1 ≤ m ≤ N . Notice firstly that

(4.42) logNq

({∑
n∈A

ane(nθ)
∣∣∣ |a| ≤ 1

}
, t
)
≤ Cm log

1

t
+ logNq

({∑
n∈A

ane(nθ)
∣∣∣ |a| ≤ 1

}
, 1
)
.

This follows from the fact that for any norm ‖ · ‖ in Rm with unit-balls BX one has

(4.43) D(BX , BX , t) ≤ (4/t)m for all 0 < t < 1

by scaling and volume counting, see (4.29) for the definition of D(BX , BX , t). Indeed, suppose
M = D(BX , BX , t). Then there are M disjoint balls {xj + 1

2 tBX}Mj=1 with centers xj ∈ BX . Since

xj +
1
2 tBX ⊂ 2BX if t < 1, it follows that

M∑
j=1

|1
2
tBX | ≤ |2BX | =⇒ M(t/2)m ≤ 2m,

as claimed. Here | · | stands for Lebesgue measure. Thus (4.43) holds, and therefore also (4.42) in
view of (4.30). Hence

logNq(PA, t) ≤ Cm log
1

t
+ logNq

({∑
n∈A

ane(nθ)
∣∣∣ |a| ≤ 1

}
, 1
)

≤ Cm log
1

t
+ Cqm,

where the final term follows from (4.39).

We now turn to large t. The following corollary slightly improves on the rate of decay.

Corollary 4.10. Let q ≥ 2 and A ⊂ [1, N ]. With PA as above one has

(4.44) logNq(PA, t) ≤ Cq |A| t−ν if t >
1

2

where ν = ν(q) > 2.

Proof. Recall that Nq(PA, t) = E(PA, BLq , t). Using (4.30), one obtains from (4.40) that also

(4.45) log Ẽ(PA, BLq , t) ≤ Cq |A| t−2.

Let q < r, 1
q = 1−θ

2 + θ
r . Since for any f, g ∈ PA

‖f − g‖q ≤ ‖f − g‖1−θ
2 ‖f − g‖θr ≤ 2‖f − g‖θr,

one concludes from (4.45) that

log Ẽ(PA, BLq , t) ≤ log Ẽ(PA, BLr , (t/2)1/θ
)
≤ Cq |A| t−2/θ.

Applying (4.30) again yields (4.44).
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4.5 Decoupling lemma

Lastly, we require a version of Bourgain’s decoupling technique, cf. Lemma 4 in [B1]. In contrast to
his case we only need to decouple into two sets rather than three.

Lemma 4.11. Let real-valued functions hα(u) on C be given for α = 1, 2, 3 that satisfy

|hα(u)| ≤ (1 + |u|)pα , |hα(u)− hα(v)| ≤ (1 + |u|+ |v|)pα−δ |u− v|δ

for all u, v ∈ C and some fixed choice of pα > 0, δ > 0. Let x, y, z ∈ `2N be sequences so that
|x|, |y|, |z| ≤ 1 and suppose ζj = ζj(t) are i.i.d. random variables with P(ζj = 1) = P(ζj = 0) = 1

2 . We
assume that P(dt) = dt on [0, 1], say. Set R1

t = {1 ≤ j ≤ N |ζj(t) = 1}, R2
t = {1 ≤ j ≤ N |ζj(t) = 0}.

Then ∣∣∣∣∣∣
∫

h1

( ∑
i∈R1

t

xi

)
h2

( ∑
i∈R2

t

yi

)
h3

( ∑
i∈R2

t

zi

)
dt− h1

(1
2

∑
i

xi

)
h2

(1
2

∑
i

yi

)
h3

(1
2

∑
i

zi

)∣∣∣∣∣∣
≤ C

(
1 +

∣∣∣∑
i

xi

∣∣∣+ ∣∣∣∑
i

yi

∣∣∣+ ∣∣∣∑
i

zi

∣∣∣)p−δ
(4.46)

where p = p1 + p2 + p3 and C is some absolute constant depending only on p and δ.

Proof. By assumption,∣∣∣hα( ∑
i∈R1

t

xi

)
− hα

(1
2

N∑
i=1

xi

)∣∣∣ ≤
(
1 +

∣∣ N∑
i=1

xi
∣∣+ ∣∣ N∑

i=1

(ζi −
1

2
)xi
∣∣)pα−δ∣∣∣ N∑

i=1

(ζi −
1

2
)xi

∣∣∣δ

≤
(
1 +

∣∣ N∑
i=1

xi
∣∣)pα−δ(

1 +
∣∣ N∑
i=1

(ζi −
1

2
)xi
∣∣)pα

∣∣∣hα( ∑
i∈R1

t

xi

)∣∣∣+ ∣∣∣hα(1
2

N∑
i=1

xi

)∣∣∣ ≤ 2
(
1 +

∣∣ N∑
i=1

xi
∣∣)pα(1 + ∣∣ N∑

i=1

(ζi −
1

2
)xi
∣∣)pα

for α = 1, 2, 3. Hence∣∣∣∣∣∣
∫

h1

( ∑
i∈R1

t

xi

)
h2

( ∑
i∈R2

t

yi

)
h3

( ∑
i∈R2

t

zi

)
dt− h1

(1
2

N∑
i=1

xi

)
h2

(1
2

N∑
i=1

yi

)
h3

(1
2

N∑
i=1

zi

)∣∣∣∣∣∣
≤ C

(
1 +

∣∣∣ N∑
i=1

xi

∣∣∣+ ∣∣∣ N∑
i=1

yi

∣∣∣+ ∣∣∣ N∑
i=1

zi

∣∣∣)p−δ

·
∫ (

1 +
∣∣∣ N∑
i=1

(ζi −
1

2
)xi

∣∣∣+ ∣∣∣ N∑
i=1

(ζi −
1

2
)yi

∣∣∣+ ∣∣∣ N∑
i=1

(ζi −
1

2
)zi

∣∣∣)p

dt.(4.47)

The lemma now follows from Khinchin’s inequality. Indeed,∫ ∣∣∣ N∑
i=1

(ζi −
1

2
)xi

∣∣∣p dt ≤ Cp |x|p ≤ Cp,

by assumption.
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4.6 The proof of Proposition 4.6 and its improvement for p = 3

We now start the proof of Proposition 4.6 for p = 3. In fact, we state a somewhat more precise form
of this theorem for p = 3.

Theorem 4.12. Let 0 < δ < 1 be fixed. For every positive integer N we let ξj = ξj(ω) be i.i.d. vari-
ables with P[ξj = 1] = τ , P[ξj = 0] = 1− τ where τ = N−δ. Define a random subset

S(ω) = {j ∈ [1, N ] | ξj(ω) = 1}.

Then for every γ > 0 there is a constant Cγ so that

(4.48) sup
N≥1

P
[
sup

|an|≤1

∥∥∥ ∑
n∈S(ω)

ane(nθ)
∥∥∥
L3(T)

≥ Cγ

∥∥∥ ∑
n∈S(ω)

e(nθ)
∥∥∥
L3(T)

]
≤ γ.

Proof. Firstly, note that for fixed 0 < δ < 1 and large N Lemma 4.1 implies that

P
[ N∑
n=1

ξn ≥ 2τN
]
. exp(−cτN).

Let E ′ denote the restricted expectation

E ′ sup
|an|≤1

∥∥∥ N∑
n=1

ξnane(nθ)
∥∥∥
L3(T)

:= Eχ[
∑

ξn≤2τN ] sup
|an|≤1

∥∥∥ N∑
n=1

ξnane(nθ)
∥∥∥
L3(T)

.

Then

E sup
|an|≤1

∥∥∥ N∑
n=1

ξnane(nθ)
∥∥∥
L3(T)

≤ N exp(−cτN) + E ′ sup
|an|≤1

∥∥∥ N∑
n=1

ξnane(nθ)
∥∥∥
L3(T)

≤ O(1) + E ′ sup
|an|≤1

∥∥∥ N∑
n=1

ξnane(nθ)
∥∥∥
L3(T)

.

From now on, we set m = 2τN , and we will mostly work with E ′ instead of E . Next, fix some
{an}Nn=1 with |an| ≤ 1. Then, rescaling Lemma 4.11 (with h1(x) = h2(x) = x and h3(x) = |x|) one
obtains that

1

8

∫ 1

0

∣∣∣∣∣
N∑

n=1

anξne(nθ)

∣∣∣∣∣
3

dθ =

∫ ∫ 1

0

∑
n∈R1

t

anξne(nθ)
∑
k∈R2

t

ākξke(−kθ)
∣∣∣ ∑
`∈R2

t

a`ξ`e(`θ)
∣∣∣ dθ dt

+O

(
m

3
2

∫ 1

0

(
1 +

∣∣∣ N∑
n=1

an√
m
ξne(nθ)

∣∣∣2) dθ) .(4.49)

The O-term in (4.49) is O(m
3
2 ) by construction. Let {ξn(ω1)}Nn=1 and {ξn(ω2)}Nn=1 denote two in-

dependent copies of {ξn(ω)}Nn=1. Recall that R1
t and R2

t are disjoint for every t. Therefore, for
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fixed t

E ω sup
|an|≤1

∣∣∣∣∣∣
∫ 1

0

∑
n∈R1

t

anξn(ω)e(nθ)
∑
k∈R2

t

ākξk(ω)e(−kθ)
∣∣∣ ∑
`∈R2

t

a`ξ`(ω)e(`θ)
∣∣∣ dθ

∣∣∣∣∣∣
= E ω1,ω2 sup

|an|≤1

∣∣∣∣∣∣
∫ 1

0

∑
n∈R1

t

anξn(ω1)e(nθ)
∑
k∈R2

t

ākξk(ω2)e(−kθ)
∣∣∣ ∑
`∈R2

t

a`ξ`(ω2)e(`θ)
∣∣∣ dθ

∣∣∣∣∣∣ .(4.50)

This leads to

E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣3 dθ

. m
3
2 +

∫
E ω1,ω2 sup

|an|≤1

∣∣∣∣∣∣
∫ 1

0

∑
n∈R1

t

anξn(ω1)e(nθ)
∑
k∈R2

t

ākξk(ω2)e(−kθ)
∣∣∣ ∑
`∈R2

t

a`ξ`(ω2)e(`θ)
∣∣∣ dθ

∣∣∣∣∣∣ dt
. m

3
2 +

∫
E ′

ω1
E ′

ω2
sup

|an|≤1
|bn|≤1

∣∣∣∣∣∣
∫ 1

0

∑
n∈R1

t

anξn(ω1)e(nθ)
∑
k∈R2

t

b̄kξk(ω2)e(−kθ)
∣∣∣ ∑
`∈R2

t

b`ξ`(ω2)e(`θ)
∣∣∣ dθ

∣∣∣∣∣∣ dt
. m

3
2 +

∫
E ′

ω1
E ′

ω2
sup

|an|≤1
|bn|≤1

∣∣∣∣∣
∫ 1

0

N∑
n=1

anξn(ω1)e(nθ)

N∑
k=1

b̄kξk(ω2)e(−kθ)
∣∣∣ N∑
`=1

b`ξ`(ω2)e(`θ)
∣∣∣ dθ ∣∣∣∣∣ dt

. m
3
2 + E ′

ω2
E ω1 sup

x∈E(ω2)
sup

|A|=m

∑
n∈A

ξn(ω1)xn.(4.51)

Here

E(ω2) :=
{(∣∣∣〈e(n·), N∑

k=1

b̄kξk(ω2)e(−k·)
∣∣∣ N∑
`=1

b`ξ`(ω2)e(`·)
∣∣∣〉∣∣∣)N

n=1

∣∣∣ sup
1≤n≤N

|bn| ≤ 1
}
⊂ RN

+ .

In the calculation leading up to (4.51) we firstly used (4.50), secondly the obvious fact that the supre-
mum only increases if we introduce {bn}Nn=1 in addition to {an}Nn=1, thirdly that one can remove the
restrictions to the sets R1

t and R2
t because they can be absorbed into the choice of the sequences an, bn,

and lastly that
∑

n ξn ≤ m which allows us to introduce A ⊂ [1, N ], |A| = m. If x ∈ E(ω2), then

(4.52) |x|2`2N ≤ sup
|ak|≤1

∥∥∥∑
k

ak ξk(ω2)e(k·)
∥∥∥4
4
≤
∥∥∥∑

k

ξk(ω2)e(k·)
∥∥∥4
4
=: B2

4(ω2)

by the L4 majorant property. By Lemma 4.3,

(4.53) EB4 ≤
(
E I4,N

) 1
2 . τ2N

3
2 + τN.
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We now apply Lemma 4.7 to (4.51). This yields

E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣3 dθ . m

3
2 + E ′

ω2

[
(
√
τm+ 1)B4(ω2)+

∫ ∞

0

√
logN2(E(ω2), t) dt

]
. (τN)

3
2 + (1 + τN

1
2 )(τ2N

3
2 + τN) + E ′

ω2

∫ ∞

0

√
logN2(E(ω2), t) dt.(4.54)

It remains to deal with the entropy integral in (4.54). To this end, observe that the distance between
any two elements in E(ω2) is of the form

‖g|g| − h|h|‖2 ≤ ‖g − h‖∞(‖g‖2 + ‖h‖2)
. N ε‖g − h‖q(‖g‖2 + ‖h‖2) . N ε√m‖g − h‖q,

where we chose q very large depending on ε (the factor N ε comes from Bernstein’s inequality). Here
g, h ∈

√
mPA where A = A(ω2) = {n ∈ [1, N ] | ξn(ω2) = 1} and

(4.55) PA =

{∑
n∈A

ane(n·)
∣∣∣ |a|`2N ≤ 1

}
.

Actually, our coefficients are in the unit-ball of `∞n , but we have embedded this into `2m in the obvious
way, which leads to the

√
m-factor in front of PA (at this point recall that we are working with E ′

ω2
).

One concludes that, for ε > 0 small and q < ∞ large depending on ε,

logN2(E(ω2), t) ≤ logNq(PA, N
−εm−1t)

≤ Cqm

{
1 + log mNε

t 0 < t < mN ε

(m−1N−εt)−ν t > N εm
(4.56)

where ν > 2, see Corollary 4.9 and Corollary 4.10. It follows that the last term in (4.54) is at most

E ω2

∫ ∞

0

√
logN2(E(ω2), t) dt . N εm

3
2 .

Plugging this into (4.54) yields

E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣3 dθ . (τN)

3
2 + (1 + τN

1
2 )(τ2N

3
2 + τN) +N ε(τN)

3
2

. τ3N2 +N ε(τN)
3
2 .(4.57)

Now suppose δ < 1
3 . Then τ3N2 > N ε(τN)

3
2 provided ε > 0 is small and fixed, and provided N is

large. Hence, combining (4.57) with Lemma 4.3 leads to Theorem 4.12 at least if δ < 1
3 . If one is

willing to loose a N ε-factor, then (4.57) in combination with Lemma 4.3 leads to the desired bounds

in all cases. On the other hand, if δ ≥ 1
3 so that typically #(S(ω)) . N

2
3 , then Bourgain showed that

S(ω) is a Λ3 set with large probability. More precisely, he showed that the constant

K3(ω) := sup
|a|

`2
N
≤1

∥∥∥ ∑
n∈S(ω)

ane(n·)
∥∥∥
3
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satisfies EK3
3 ≤ C. Hence, in our case,

E sup
|an|≤1

∥∥∥ N∑
n=1

anξn(ω)e(n·)
∥∥∥3
3
. (τN)

3
2 .

Clearly, ∥∥∥ N∑
n=1

ξn(ω)e(n·)
∥∥∥
3
≥
∥∥∥ N∑
n=1

ξn(ω)e(n·)
∥∥∥
2
= #(S(ω))

1
2 ,

and we have thus proved (4.48) for δ ≥ 1
3 as well.

It is perhaps worth pointing out that interpolation of the L4 bound with the L2 bound gives

τ
5
2N2 + (τN)

3
2 ,

so that the estimate we just obtained is better by the initial τ3-factor (note that this is due to the√
τm-factor in Lemma 4.7 as compared to a

√
τN -factor).

4.7 The case of general p

The strategy is to first generalize the previous argument to all odd integers using the fact that the
majorant property holds for all even integers (for p = 3 we used this fact with p = 4). Then one runs
the same argument again, using now that the (random) majorant property holds for all integers p and
so on. For a given ε > 0 this yields that there is a set of p that is ε-dense in [2,∞) and for which the
majorant property holds. This is enough by interpolation, since we are allowing a loss of N ε in (4.18).
Unfortunately, there are certain technical complications in carrying out this program having to do
with the size of δ. In this section we finish a proof a Proposition 4.6 by employing the above method
for p = 3. The next Lemma formalizes the main probabilistic argument from the previous section.
Let p ≥ 2. In this section, we say that the random majorant property (or RMP in short) holds at p if
and only if for every ε > 0 there exists a constant Cε so that

(4.58) E sup
|an|≤1

∥∥∥ N∑
n=1

anξne(nθ)
∥∥∥p
p
≤ CεN

ε E
∥∥∥ N∑
n=1

ξne(nθ)
∥∥∥p
p

for all N ≥ 1. Note that (the proof of) Theorem 4.12 establishes that the random majorant property
holds at p = 3. Moreover, if (4.58) holds for some p, then (4.18) also holds for that value of p, see
Lemma 4.3.

Lemma 4.13. Let 2 ≤ p ≤ 3. Suppose the random majorant property (4.58) holds at 2(p− 1). Then
it also holds at p. Furthermore, suppose the RMP holds at p− 1, 2(p− 1) and 2(p− 2). If 4 ≥ p ≥ 3,

then it also holds at p. If p > 4 and δ ≤ 1
2 (i.e., τ = N−δ ≥ N− 1

2 ), then it also holds at p.
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Proof. Assume first that p ≥ 3. Instead of (4.49), Lemma 4.11 implies in this case that

2−p

∫ 1

0

∣∣∣∣∣
N∑

n=1

anξne(nθ)

∣∣∣∣∣
p

dθ =

∫ ∫ 1

0

∑
n∈R1

t

anξne(nθ)
∑
k∈R2

t

ākξke(−kθ)
∣∣∣ ∑
`∈R2

t

a`ξ`e(`θ)
∣∣∣p−2

dθ dt

+O

(
m

p
2

∫ 1

0

(
1 +

∣∣∣ N∑
n=1

an√
m
ξne(nθ)

∣∣∣p−1)
dθ

)
.(4.59)

To bound the O-term in (4.59) note that by the RMP for p− 1 ≥ 2,

(4.60) E sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξne(nθ)
∣∣∣p−1

dθ ≤ CεN
ε E
∫ 1

0

∣∣∣ N∑
n=1

ξne(nθ)
∣∣∣p−1

dθ = CεN
ε E Ip−1,N .

A calculation analogous to that leading up to (4.51) therefore yields
(4.61)

E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣p dθ . m

p
2 +CεN

εm
1
2 E Ip−1,N + E ′

ω2
E ′

ω1
sup

x∈E(ω2)
sup

|A|=m

∑
n∈A

ξn(ω1)xn,

where now

E(ω2) =
{(∣∣∣〈e(n·), N∑

k=1

b̄kξk(ω2)e(−k·)
∣∣∣ N∑
`=1

b`ξ`(ω2)e(`·)
∣∣∣p−2〉∣∣∣)N

n=1

∣∣∣ sup
1≤n≤N

|bn| ≤ 1
}
⊂ RN

+ .

If x ∈ E(ω2), then by Plancherel and the RMP at 2(p− 1),

E sup
x∈E(ω2)

|x|2`2N ≤ E ω2 sup
|ak|≤1

∫ 1

0

∣∣∣∑
k

ak ξk(ω2)e(kθ)
∣∣∣2(p−1)

dθ(4.62)

≤ CεN
ε E ω2

∫ 1

0

∣∣∣∑
k

ξk(ω2)e(kθ)
∣∣∣2(p−1)

dθ ≤ CεN
ε E I2(p−1),N .

Thus, by (4.61) and Lemma 4.7,

E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣p dθ

≤ CεN
ε
[
m

p
2 +m

1
2 E Ip−1,N + (1 +

√
mτ)

√
E I2(p−1),N + E ′

ω2

∫ ∞

0

√
logN2(E(ω2), t) dt

]
.(4.63)

To estimate the entropy term, let q be very large depending on ε. Then the distance between any
two elements in E(ω2) is of the form

‖g|g|p−2 − h|h|p−2‖2 ≤ ‖g − h‖∞
(
‖g‖p−2

2(p−2) + ‖h‖p−2
2(p−2)

)
≤ CεN

ε‖g − h‖q
(
‖g‖p−2

2(p−2) + ‖h‖p−2
2(p−2)

)
≤ CεN

ε sup
|an|≤1

∥∥∥ N∑
n=1

anξn(ω2)e(n·)
∥∥∥p−2

2(p−2)
‖g − h‖q,

=: CεN
εJ

1
2

2(p−2),N (ω2) ‖g − h‖q,(4.64)
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where the N ε-term follows from Bernstein’s inequality and we have set

sup
|an|≤1

∥∥∥ N∑
n=1

anξn(ω2)e(n·)
∥∥∥2(p−2)

2(p−2)
=: J2(p−2),N (ω2).

As before, g, h ∈
√
mPA, A = A(ω2) = {n ∈ [1, N ] | ξn(ω2) = 1}, see (4.55). One concludes that, for

ε > 0 small and q < ∞ large depending on ε,

logN2(E(ω2), t) ≤ logNq

(
PA(ω2), N

−εm− 1
2 J

− 1
2

2(p−2),N t
)

≤ Cq m

 1 + log 1
t if 0 < t < N ε

√
mJ2(p−2),N (ω2)

(m− 1
2 J

− 1
2

2(p−2),N (ω2)N
−εt)−ν if t > N ε

√
mJ2(p−2),N (ω2)

where ν > 2, see Corollary 4.9 and Corollary 4.10. Inserting this estimate into the last term of (4.63)
yields by the random majorant property on 2(p− 2) ≥ 2,

(4.65) E ′
ω2

∫ ∞

0

√
logN2(E(ω2), t) dt ≤ CεN

εm
√

E I2(p−2),N

and therefore finally, by Lemma 4.3,

E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣p dθ

≤ CεN
ε
[
m

p
2 +m

1
2 E Ip−1,N + (1 +

√
mτ)

√
E I2(p−1),N +m

√
E I2(p−2),N

]
≤ CεN

ε
[
(τN)

p
2 + (τN)

1
2

(
τp−1Np−2 + (τN)

p−1
2

)
+(1 + τ

√
N)
(
τ2(p−1)N2p−3 + (τN)p−1

) 1
2
+ τN

(
τ2(p−2)N2p−5 + (τN)p−2

) 1
2
]

≤ CεN
ε
[
τpNp−1 + τp−1Np− 3

2 + (τN)
p
2

]
.(4.66)

If τ ≥ N− 1
2 , then τpNp−1 ≥ τp−1Np− 3

2 . Moreover, if τ ≤ N
3−p
p−2 , then τp−1Np− 3

2 ≤ (τN)
p
2 . In

particular, if 3 ≤ p ≤ 4, then τp−1Np− 3
2 . E Ip,N , and the result follows. On the other hand, if p ≥ 4,

then τ ≥ N− 1
2 insures that τp−1Np− 3

2 . τpNp−1 . E Ip,N , as claimed.
It remains to discuss 2 ≤ p ≤ 3. In that case, Lemma 4.11 implies that

2−p

∫ 1

0

∣∣∣∣∣
N∑

n=1

anξne(nθ)

∣∣∣∣∣
p

dθ =

∫ ∫ 1

0

∑
n∈R1

t

anξne(nθ)
∑
k∈R2

t

ākξke(−kθ)
∣∣∣ ∑
`∈R2

t

a`ξ`e(`θ)
∣∣∣p−2

dθ dt

+O

(
m

p
2

∫ 1

0

(
1 +

∣∣∣ N∑
n=1

an√
m
ξne(nθ)

∣∣∣2) dθ) .(4.67)

The integral in (4.67) is O(1). Hence (4.61) changes to
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(4.68) E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣p dθ . m

p
2 + E ′

ω2
E ′

ω1
sup

x∈E(ω2)
sup

|A|=m

∑
n∈A

ξn(ω1)xn,

with the same E(ω2), and (4.63) becomes

E ω sup
|an|≤1

∫ 1

0

∣∣∣ N∑
n=1

anξn(ω)e(nθ)
∣∣∣p dθ

≤ CεN
ε
[
m

p
2 + (1 +

√
mτ)

√
E I2(p−1),N + E ′

ω2

∫ ∞

0

√
logN2(E(ω2), t) dt

]
.(4.69)

Finally, the entropy estimate simplifies as 2(p− 2) ≤ 2 in this case: If g|g|p−2, h|h|p−2 ∈ E(ω2), then
g, h ∈ PA(ω2) and thus

‖g|g|p−2 − h|h|p−2‖2 . ‖g − h‖∞
(
‖g‖p−2

2(p−2) + ‖h‖p−2
2(p−2)

)
≤ CεN

ε‖g − h‖q
(
‖g‖p−2

2 + ‖h‖p−2
2

)
≤ CεN

εm
p−2
2 ‖g − h‖q,

so that now

E ′
ω2

∫ ∞

0

√
logN2(E(ω2), t) dt ≤ CεN

εm
p
2 .

We leave it to the reader to check that this again leads to (4.66). As already mentioned above, the

term τp−1Np− 3
2 can be absorbed into (τN)

p
2 , since p ≤ 3.

This lemma quickly leads to a proof of Proposition 4.6 in case δ ≤ 1
2 for p > 4, and for all 0 < δ < 1

if 2 < p < 4.

Corollary 4.14. Suppose 0 < δ ≤ 1
2 and assume otherwise that the hypotheses of Proposition 4.6

are satisfied. Then (4.58) holds for all p ≥ 4. If 2 < p < 4, then (4.58) holds for all 0 < δ < 1. In
particular, Proposition 4.6 is valid in these cases.

Proof. As a first step, note that Lemma 4.13 immediately implies that all odd integers satisfy (4.58).
Next, one checks that (4.58) holds at p = 5

2 since 2(p− 1) = 3 in that case. Now Lemma 4.13 implies

that (4.58) holds at all other values p = 2`+1
2 , for all integers ` ≥ 3. Generally speaking, one checks

by means of induction that (4.58) holds at all

p ∈
{
2 +

`

2j

∣∣∣ ` ∈ Z+
}
=: Pj .

Indeed, we just verified that this holds for j = 0, 1. Now assume that it holds up to some integer j and
we will prove it for j+1. Thus take p = 2+ `

2j+1 ∈ Pj+1 such that 2 < p < 3. Then 2(p− 1) = 2+ `
2j

for which (4.58) holds by assumption. Hence Lemma 4.13 applies. Now suppose p ∈ Pj+1 is such that
3 < p < 4. Then (4.58) holds at p− 1 by what we just did, and at 2(p− 1), 2(p− 2) by assumption.
Hence Lemma 4.13 applies again. One now continues with 4 < p < 5 etc., and we are done. Given
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any ε > 0 and p > 2 one can find p1 < p < p2 with p1, p2 ∈ Pj where p2 − p1 < ε. Hence (4.58) holds
for all p by interpolation, as desired. It remains to deal with δ > 1

2 if 2 < p < 4. Fix such a p. Then
by Bourgain’s theorem on random Λ(p) sets, δ > 1

2 implies that the random set S(ω) is a Λ(p) set.
More precisely,

E sup
|an|≤1

∥∥∥ N∑
n=1

anξn(ω)e(n·)
∥∥∥p
p
. (τN)

p
2 .

Clearly, ∥∥∥ N∑
n=1

ξn(ω)e(n·)
∥∥∥
p
≥
∥∥∥ N∑
n=1

ξn(ω)e(n·)
∥∥∥
2
= #(S(ω))

1
2 ,

and we are done.

4.8 Choosing subsets by means of correlated selectors

To conclude this section, we want to address the issue of obtaining a version of Proposition 4.6
for subsets which are obtained by means of selectors ξj that are allowed to have some degree of
dependence. More precisely, we will work with the selectors from the following definition.

Definition 4.15. Let 0 < τ < 1 be fixed. Define ξj(ω) = χ[0,τ ](2
jω) for j ≥ 1. Here ω ∈ T = R/Z

with probability measure P(dω) = dω equal to normalized Lebesgue measure.

Since the doubling map ω 7→ 2ω mod 1 is measure preserving, it follows that E ξj = τ and
P[ξ = 1] = τ , P[ξj = 0] = 1 − τ , as in the random case. However, these selector variables are no
longer independent. Nevertheless, they are close enough to being independent to make the following
theorem accessible to the methods of the previous section.

Theorem 4.16. Let 0 < δ < 1 be fixed. For every positive integer N we let ξj = χ[0,τ ](2
jω) be as in

Definition 4.15 with τ = N−δ. Define a subset

(4.70) S(ω) = {j ∈ [1, N ] | ξj(ω) = 1}

for every ω ∈ T. Then for every ε > 0 and 7 ≥ p ≥ 2 one has

(4.71) P
[
sup

|an|≤1

∥∥∥ ∑
n∈S(ω)

ane(nθ)
∥∥∥
Lp(T)

≥ N ε
∥∥∥ ∑
n∈S(ω)

e(nθ)
∥∥∥
Lp(T)

]
→ 0

as N → ∞. Moreover, under the additional restriction δ ≤ 1
2 , (4.71) holds for all p ≥ 7.

To prove this theorem we may of course assume that τ = 2−k for some positive integer k. Then
ξj is measurable with respect to the dyadic intervals of length 2−k−j on the unit interval T, denoted
by Dj+k. Moreover, it is easy to see that ξj and ξj+ak are independent variables.

Lemma 4.17. Fix j ≥ 0 and k ≥ 1. Let τ = 2−k and ξi be as in Definition 4.15. Then the sequence{
ξj+ak

}∞

a=1
is a realization of a 0, 1-valued Bernoulli sequence with E ξi = τ .
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Proof. Fix a > 1 and note that the variable ξj+ak(ω) is 2
−(j+ak)-periodic. On the other hand, each of

the variables ξj+bk with b < a is constant on intervals from Dj+ak (which is the same as saying that
these variables are all Dj+ak measurable). It follows that

P
[
ξj+ak = 1 | ξj+bk = εb, 0 ≤ b ≤ a− 1

]
= τ = P[ξj+ak = 1],

for any choice of εb = 0, 1, 0 ≤ b ≤ a− 1. This implies independence.

From now on, let τ = N−δ for some fixed 0 < δ < 1. In view of Lemma 4.17 we can decompose
the sequence {ξj}Nj=1 into about logN many subsequences, where the indices run along arithmetic
progressions Pi of step-size equal to ∼ logN , and 1 ≤ i . logN . Each of the subsequences consists of
i.i.d. variables, but variables from different subsequences are not independent. This easily shows that
Lemma 4.3 remains valid here, possibly with a logarithmic loss in the upper bound for E Ip,N . Indeed,
recall that the proof of that Lemma is based upon splitting a random trigonometric polynomial into
its expectation and a mean-zero part. Since the Lp-norm of the Dirichlet kernel on an arithmetic

progression of length K is about K
1
p′ , and here #Pi ∼ N

logN , one sees immediately that the upper
bound from (4.7) is the same up to logarithmic factors. As far as the lower bound of Lemma 4.3 is
concerned, note that the proof relies on obtaining upper bounds on certain error terms, cf. (4.10)-
(4.13). However, these upper bounds are again immediate corollaries of the random case by virtue of
the splitting into the progressions Pi.

The consequence of this is that basically all the main estimates from the previous section remain
valid here, up to possibly an extra factor of logN . Clearly, such factors are irrelevant in this context.
More precisely, with ξj as in Definition 4.15 and S(ω) as in (4.70), it is a corollary of the proof of
Proposition 4.6 that

(4.72) E sup
|an|≤1

∥∥∥ ∑
n∈S(ω)

ane(nθ)
∥∥∥p
Lp(T)

≤ CεN
ε
(
τpNp−1 + (τN)

p
2
)
.

The proof of Theorem 4.16 is therefore completed as before by appealing to (the adapted version) of
Lemma 4.3.

Remark 4.18. Other examples of much more strongly correlated selectors are ξj(ω) = χ[0,τ ](j
sω)

where s is a fixed positive integer and ω ∈ T. It appears to be rather difficult to prove a version of
Proposition 4.6 for these types of selectors.

5 Perturbing arithmetic progressions

Let P ⊂ [1, N ] be an arithmetic progression of length L, i.e.,

P = {b+ a` | 0 < b < a, 0 ≤ ` < L := bN/ac} ⊂ [1, N ].

Fix some arbitrary ε0 > 0. Suppose N ε0 < s < a and let {ξj}j∈P be i.i.d. variables, integer valued
and uniformly distributed in [−s, s]. We define a random subset

(5.1) S(ω) := {j + ξj(ω) | j ∈ P}.

For future reference, we set Ij := [j − s, j + s] for each j ∈ P. By construction, S(ω) ⊂
∪

j∈P Ij , and
the intervals Ij are congruent and pairwise disjoint.
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5.1 Suprema of random processes

The following lemma is related to Lemma 4.7.

Lemma 5.1. Let E ⊂ RN
+ , B = supx∈E |x|, and S(ω) be as in (5.1). Then

E ω sup
x∈E

∑
j∈S(ω)

xj . B
(
1 +

√
L/s

)
+

∫ B

0

√
logN2(E , t) dt

where N2 refers to the L2 entropy.

Proof. As in the proof of Lemma 4.7, we introduce 2−k-nets Ek and Fk ⊂ RN so that diam(Fk) ≤ 1,

(5.2) log #Fk ≤ C log #Ek+1,

and

(5.3) E sup
x∈E

∑
n∈S(ω)

xn ≤
∑
k≥k0

2−k+1 E sup
y∈Fk

∑
n∈S(ω)

|yn|.

Now fix some k ≥ k0 and write F instead of Fk. With 0 < ρ2 to be determined, one has for any
|y| ≤ 1 ∑

i∈S(ω)

yi ≤
∑
yi≥ρ2

yi +
∑
yi<ρ2

χS(ω)(i) yi ≤ ρ−1
2 +

∑
yi<ρ2

χS(ω)(i) yi.

Let q := 1 + blogFc. Then, as in (4.24),

(5.4) E sup
y∈F

∑
i∈S(ω)

yi . ρ−1
2 + sup

|y|≤1

∥∥∥ ∑
yi<ρ2

χS(ω)(i) yi

∥∥∥
Lq(ω)

.

To control the last term in (5.4), we need the following analogue of (4.25). By the multinomial
theorem (for any positive integer q),

E
[ ∑
n∈S(ω)

χA(n)
]q

= E
[∑
j∈P

χA(j + ξj(ω))
]q

=
∑

q1+...+qL=q

(
q

q1, . . . , qL

)
E
∏
j∈P

χA(j + ξj(ω))
qj

=

q∑
ν=1

∑
1≤i1<i2<...<iν≤L

i1,...,iν∈P

∑
qi1+...+qiν=q
qi1≥1,...,qiν≥1

(
q

qi1 , . . . , qiν

)
E

ν∏
t=1

χA(it + ξit(ω))

=

q∑
ν=1

∑
1≤i1<i2<...<iν≤L

i1,...,iν∈P

∑
qi1+...+qiν=q
qi1≥1,...,qiν≥1

(
q

qi1 , . . . , qiν

)
|A ∩ Ii1 |
|Ii1 |

|A ∩ Ii2 |
|Ii2 |

· . . . · |A ∩ Iiν |
|Iiν |

≤
q∑

ν=1

νq
1

ν!

(∑
j∈P

|A ∩ Ij |
|Ij |

)ν
≤

q∑
ν=1

νq

q!

q!

ν!

( |A ∩
∪

j∈P Ij |
2s+ 1

)ν
≤

q∑
ν=1

(
q

ν

)
qq−ν

(e|A ∩
∪

j∈P Ij |
2s+ 1

)ν
≤
(
q +

e|A ∩
∪

j∈P Ij |
2s+ 1

)q
.
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Continuing with the final term in (5.4) one concludes that

sup
|y|≤1

∥∥∥ ∑
yi<ρ2

χS(ω)(i) yi

∥∥∥
Lq(ω)

.
∑

ρ−2
2 <2j

2−
j
2 sup
|A|=2j

∥∥∥ ∑
n∈S(ω)

χA(n)
∥∥∥
Lq(ω)

.
∑

ρ−2
2 <2j

2−
j
2

(
q +

min(Ls, 2j)

s

)
. qρ2 +

√
L/s.

Let ρ2 = q−
1
2 = (1 + log#F)−

1
2 . Inserting this bound into (5.4) therefore yields

E sup
y∈F

∑
i∈S(ω)

yi .
√
q +

√
L/s .

√
L/s+ 1 +

√
log#F .

The lemma now follows in view of (5.2) and (5.3).

5.2 The Lp norm of the Dirichlet kernel over S(ω)

The following lemma determines an upper bound on the typical size of the Dirichlet kernel over S(ω)
in the Lp-norm, with 2 ≤ p ≤ 4. The lower bound, as well as the case p > 4 will be dealt with below.

Lemma 5.2. With S(ω) as in (5.1), there exists a constant Cp so that

E
∥∥∥ ∑
n∈S(ω)

e(n·)
∥∥∥p
p
≤ Cp

(
L

p
2 +

Lp−1

s

)
for all 2 ≤ p ≤ 4.

Proof. For every ` ∈ Z define

A`(ω) := #{n,m ∈ S(ω) | n−m = `} =
∑
j,k∈P

χ[j−k+ξj−ξk=`].

Clearly, P − P ⊂
∪

i Ji where i ∈ aZ and Ji := [i− 2s, i + 2s]. These intervals are mutually disjoint
since s � a. This means that

` ∈ Ji =⇒ A`(ω) =
∑
j∈P

χ[j−i∈P]χ[ξj−ξj−i=`−i].

Let us denote the unique i for which ` ∈ Ji by i(`). For simplicity, we shall mostly write i. If i = 0,
then A`(ω) = Lδ0(`) (recall that #P = L). Otherwise, if i 6= 0, then one finds that

EA` =
∑
j∈P

2

2s+ 1

(
1− |`− i|

s

)
+
χP(j − i) = (L− |i|/a)+

2

2s+ 1

(
1− |`− i|

s

)
+

(5.5)

=
2L

2s+ 1
K̂s(`− i(`))K̂L(|i|/a)(5.6)
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where K̂n(k) = (1− |k|/n)+ denotes the Fejer kernel. Moreover, if i 6= 0, then

EA2
` = E

∑
j,k∈P

j−i∈P, k−i∈P

χ[ξj−ξj−i=`−i]χ[ξk−ξk−i=`−i]

=
∑
j,k∈P

j−i∈P, k−i∈P

χ[j 6=k,j 6=k±i] Eχ[ξj−ξj−i=`−i] Eχ[ξk−ξk−i=`−i]

+
∑
j,k∈P

j−i∈P, k−i∈P

(
χ[j=k,j 6=k±i] + χ[j 6=k,k+i,j=k−i] + χ[j 6=k,k−i,j=k+i]

)
Eχ[ξj−ξj−i=`−i]χ[ξk−ξk−i=`−i].

Hence

EA2
` =

∑
j,k∈P

j−i∈P, k−i∈P

Eχ[ξj−ξj−i=`−i] Eχ[ξk−ξk−i=`−i]

+
∑
j,k∈P

j−i∈P, k−i∈P

(
χ[j=k,j 6=k±i] + χ[j 6=k,k+i,j=k−i] + χ[j 6=k,k−i,j=k+i]

)
E
(
χ[ξj−ξj−i=`−i]χ[ξk−ξk−i=`−i]

)
(5.7)

−
∑
j,k∈P

j−i∈P, k−i∈P

(
χ[j=k,j 6=k±i] + χ[j 6=k,k+i,j=k−i] + χ[j 6=k,k−i,j=k+i]

)
Eχ[ξj−ξj−i=`−i] Eχ[ξk−ξk−i=`−i](5.8)

= (EA`)
2 +O

(L
s

(
1− |`− i|

s

)
+

)
.(5.9)

The O-term in (5.9) arises because the error terms in (5.7) and (5.8) basically reduce to the compu-
tation of a single expectation as in (5.5). Now consider

Vp,N :=

∫ 1

0

∣∣∣∑
`∈Z

(A`(ω)− EA`)e(`θ)
∣∣∣ p2 dθ.

Since p ≤ 4 by assumption, EVp,N ≤ (EV4,N )
p
4 . Moreover, by (5.9),

EV4,N = E
∑
`∈Z

|A`(ω)− EA`|2 =
∑
`∈Z

[
E (A2

`)− (EA`)
2
]

= E (A2
0)− (EA0)

2 +
∑
` 6=0

[
(EA`)

2 +O
(L
s

(
1− |`− i|

2s+ 1

)
+

)]
−
∑
` 6=0

(EA`)
2

. L2

and therefore

(5.10) EVp,N . L
p
2 .
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In view of (5.6),∑
`∈Z

EA` e(`θ) =
∑
`∈Z

2L

2s+ 1
K̂s(`− i(`))K̂L(|i(`)|/a)e((`− i(`))θ)e(i(`)θ)

=
2L

2s+ 1

∑
k∈Z

K̂s(k)e(kθ)
∑
j∈Z

K̂L(j)e(jaθ) =
2L

2s+ 1
Ks(θ)KL(aθ).

It follows that∫ 1

0

∣∣∣∑
`∈Z

EA` e(`θ)
∣∣∣ p2 dθ .

(L
s

) p
2

∫ 1

0

(1
s
min(s2, θ−2)

) p
2 |KL(aθ)|

p
2 dθ

.
(L
s

) p
2
{
s

p
2 a−1 L

p
2
−1 +

a∑
j=1

(1
s
min(s2, (j/a)−2)

) p
2
a−1 L

p
2
−1
}

. Lp−1

s
.(5.11)

Combining (5.10) with (5.11) one obtains for 2 ≤ p ≤ 4

E
∫ 1

0

∣∣∣ ∑
n∈S(ω)

e(nθ)
∣∣∣p dθ = E

∫ 1

0

∣∣∣∑
`∈Z

A`(ω)e(`θ)
∣∣∣ p2 dθ

.
∫ 1

0

∣∣∣∑
`∈Z

EA` e(`θ)
∣∣∣ p2 dθ + E

∫ 1

0

∣∣∣∑
`∈Z

[A`(ω)− EA`]e(`θ)
∣∣∣ p2 dθ

. Lp−1

s
+ L

p
2 ,(5.12)

as claimed.

The following lemma is a special case of a well-known large deviation estimate for martingales with
bounded increments. The norm ‖ · ‖∞ refers to the supremum norm with respect to the probability
space.

Lemma 5.3. Suppose {Xj}Mj=1 are complex-valued independent variables with EXj = 0. Then for
all λ > 0

P
[∣∣ M∑

j=1

Xj

∣∣ > λ
( M∑
j=1

‖Xj‖2∞
) 1

2
]
< C e−cλ2

with some absolute constants c, C.

Lemma 5.3 implies the following simple generalization of the Salem-Zygmund bound.

Corollary 5.4. Let s, L be positive integers. Suppose TL is a trigonometric polynomial with random
coefficients that can be written in the form

TL(θ) =

L∑
j=−L

aj(θ)e(jθ)
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where aj(θ) are trigonometric polynomials of degree at most s, and such that for fixed θ they are
independent random variables with E aj(θ) = 0. Moreover, we assume that supθ∈T |aj(θ)| ≤ 1 for
each j. Then for every A > 1

P[‖TL‖∞ > C
√

log(s+ L)
√
L] ≤ (s+ L)−A,

with some constant C = C(A).

Proof. Fix θ ∈ T and apply Lemma 5.3 with Xj = aj(θ)e(jθ). By assumption, these are complex
valued independent mean-zero variables with ‖Xj‖∞ ≤ 1. Therefore,

(5.13) sup
θ∈T

P
[∣∣ L∑

j=−L

aj(θ)e(jθ)
∣∣ > λ

√
L
]
< C e−cλ2

.

If |θ − θ′| < (s+ L)−2, then by Bernstein’s inequality

|TL(θ)− TL(θ
′)| ≤ (s+ L)‖TL‖∞|θ − θ′| . (s+ L)L(s+ L)−2 . 1.

Now pick a (s + L)−2-net on the circle. The corollary follows by setting λ = C log(s + L) with C
large, and summing (5.13) over the elements of the net.

We can now state the general version of Lemma 5.2. It is possible to remove the log-term from
the upper bound, but the bound given below suffices for our purposes.

Lemma 5.5. For all p ≥ 2 there exists Cp so that

(5.14) E
∥∥∥ ∑
n∈S(ω)

e(n·)
∥∥∥p
p
≤ Cp

(Lp−1

s
+ (L logN)

p
2

)
.

Moreover, there is cp > 0 small so that

P
[∥∥∥ ∑

n∈S(ω)

e(n·)
∥∥∥p
p
< cp

(
L

p
2 +

Lp−1

s

)]
→ 0

as N → ∞.

Proof. We work with the following splitting:

(5.15)
∑

n∈S(ω)

e(nθ) =
∑
n∈Z

EχS(ω)(n)e(nθ) +
∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ).

Clearly,

(5.16)
∑
n∈Z

EχS(ω)(n)e(nθ) =
1

2s+ 1
Ds(θ)

∑
j∈P

e(jθ),
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and thus ∥∥∥∑
n∈Z

EχS(ω)(n)e(nθ)
∥∥∥p
p

. s−p

∫ 1

0

∣∣∣min(s, θ−1)

L∑
j=1

e(jaθ)
∣∣∣p dθ

. s−p
[ L∑
k=1

min(s, a/k)p + sp
]Lp−1

a
. Lp−1

s
.(5.17)

Conversely, ∥∥∥∑
n∈Z

EχS(ω)(n)e(nθ)
∥∥∥p
p

& s−p

∫ 1/s

0

∣∣∣Ds(θ)
L∑

j=1

e(jaθ)
∣∣∣p dθ

& a

s

Lp−1

a
=

Lp−1

s
.(5.18)

Both (5.17) and (5.18) hold for all p > 1. The second sum in (5.15) can be written as∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ) =

∑
j∈P

aj(ω, θ)e(jθ),

where aj(ω, θ) = χIj (ξj(ω))e(ξj(ω))− 1
2s+1Ds(θ). Clearly, E aj(ω, θ) = 0, supθ |aj(ω, θ)| ≤ 2 and for

fixed θ the random variables aj(ω, θ) are independent. Thus Corollary 5.4 yields that

(5.19)
∥∥∥∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ)

∥∥∥
∞

.
√
L
√

logN

up to probability at most (s+ L)−p. In particular,

E
∥∥∥∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ)

∥∥∥p
p
. (L logN)

p
2 + Lp(s+ L)−p . (L logN)

p
2 .

In conjunction with (5.17) this yields (5.14). For the lower bound, take N−ε0/2 > h � 1
s . Then∫ 1

0

∣∣∣ ∑
n∈S(ω)

e(nθ)
∣∣∣p dθ &

∫ 1/s

0

∣∣∣∑
n∈Z

EχS(ω)(n)e(nθ)
∣∣∣p dθ − ∫ 1/s

0

∣∣∣∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ)

∣∣∣p dθ
+

∫ 1−h

h

∣∣∣∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ)

∣∣∣p dθ − ∫ 1−h

h

∣∣∣∑
n∈Z

EχS(ω)(n)e(nθ)
∣∣∣p dθ

=: I + II + III + IV.(5.20)

By (5.18), I & Lp−1

s . Secondly,

IV .
∫ 1−h

h

∣∣∣1
s
Ds(θ)

L−1∑
j=0

e(jaθ)
∣∣∣p dθ

. s−p
∑
j>ah

(j/a)−p L
p−1

a
. s−ph−p+1Lp−1 � Lp−1

s
(5.21)
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where the final estimate follows from hs � 1. Thirdly, in view of p ≥ 2 and (5.19),

III &
∫ 1

0

∣∣∣∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ)

∣∣∣p dθ
−
(∫ h

0
+

∫ 1

1−h

)∣∣∣∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ)

∣∣∣p dθ
&

(∫ 1

0

∣∣∣∑
n∈Z

[
χS(ω)(n)− EχS(ω)(n)

]
e(nθ)

∣∣∣2 dθ) p
2

− C h(L logN)
p
2

& L
p
2 − C h(L logN)

p
2 ,(5.22)

up to probability (s+ L)−p = o(1) as N → ∞. Similarly, (5.19) implies that

II . s−1 (L logN)
p
2

up to probability (s+ L)−p. Combining this bound with (5.22), (5.21), and (5.20) implies that∫ 1

0

∣∣∣ ∑
n∈S(ω)

e(nθ)
∣∣∣p dθ & Lp−1

s
+ L

p
2 − C(h+ s−1)(L logN)

p
2

asymptotically with probability one. Since h < N−ε and s > N ε, the lemma follows.

5.3 The majorant property for randomly perturbed arithmetic progressions

We are now ready to state our first result for perturbed arithmetic progressions as defined in (5.1).
In this section, if S is the perturbation of an arithmetic progression of length L, then we write

Ap,L(ω) :=
∥∥∥ ∑
n∈S(ω)

e(n·)
∥∥∥p
p
.

Also, we say that the random majorant property (RMP) holds at p if

(5.23) E ω sup
|an|≤1

∥∥∥ ∑
n∈S(ω)

an e(n·)
∥∥∥p
p
≤ CεN

ε E ω

∥∥∥ ∑
n∈S(ω)

e(nθ)
∥∥∥p
p
.

Of course, this depends on the length L of the underlying arithmetic progression. Although L is
arbitrary, it will be kept fixed in the course of any argument that uses (5.23).

Theorem 5.6. Let S be as in (5.1). Then for every ε > 0 and 4 ≥ p ≥ 2 one has

(5.24) P
[
sup

|an|≤1

∥∥∥ ∑
n∈S(ω)

ane(nθ)
∥∥∥
Lp(T)

≥ N ε
∥∥∥ ∑
n∈S(ω)

e(nθ)
∥∥∥
Lp(T)

]
→ 0

as N → ∞. Moreover, under the additional restriction L ≥ s, (5.24) holds for all p ≥ 4.
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Proof. The proof is similar to the random case of the previous section, so we shall be somewhat brief.
We will show that the RMP holds at p provided either 2 ≤ p ≤ 3, or if the RMP holds at p − 1,
2(p − 1), and 2(p − 2). It is important to notice that the RMP at p implies (5.24). Firstly, recall
that we can write S(ω) = {j + ξj | j ∈ P}. We apply the decoupling lemma, Lemma 4.11, to the
progression P. I.e., in the notation of Lemma 4.11, R1

t := {j ∈ P |ζj = 1}, and R2
t := {j ∈ P |ζj = 0}.

Set
S1
t (ω) := {j + ξj(ω) | j ∈ R1

t }, S2
t (ω) := {j + ξj(ω) | j ∈ R2

t }.

Therefore, by Lemma 4.11,

1

8

∫ 1

0

∣∣∣ ∑
n∈S(ω)

ane(nθ)
∣∣∣p dθ =

∫ ∫ 1

0

∑
n∈S1

t (ω)

an e(nθ)
∑

k∈S2
t (ω)

āk e(−kθ)
∣∣∣ ∑
`∈S2

t (ω)

a` e(`θ)
∣∣∣p−2

dθ dt

+O

(
L

p
2

∫ 1

0

(
1 +

∣∣∣∑
n∈S

an√
L
e(nθ)

∣∣∣max(p−1,2))
dθ

)
.(5.25)

If either p ≤ 3, or if the RMP holds at p− 1, then the O-term in (5.25) is at most

(5.26) L
p
2 + CεN

εL
1
2 EAp−1,L . N εL

p
2 ,

see Lemma 5.5. We therefore obtain as in (4.51),

E ω sup
|an|≤1

∫ 1

0

∣∣∣ ∑
n∈S(ω)

an e(nθ)
∣∣∣p dθ

. CεN
εL

p
2 +

∫
E ω1,ω2 sup

|an|≤1

∣∣∣∣∣∣
∫ 1

0

∑
n∈S1

t (ω1)

an e(nθ)
∑

k∈S2
t (ω2)

āk e(−kθ)
∣∣∣ ∑
`∈S2

t (ω2)

a` e(`θ)
∣∣∣p−2

dθ

∣∣∣∣∣∣ dt
. CεN

εL
p
2 +

∫
E ω1 E ω2 sup

|an|≤1
|bn|≤1

∣∣∣∣∣∣
∫ 1

0

∑
n∈S1

t (ω1)

an e(nθ)
∑

k∈S2
t (ω2)

b̄k e(−kθ)
∣∣∣ ∑
`∈S2

t (ω2)

b` e(`θ)
∣∣∣p−2

dθ

∣∣∣∣∣∣ dt
. CεN

εL
p
2 +

∫
E ω1 E ω2 sup

|an|≤1
|bn|≤1

∣∣∣∣∣∣
∫ 1

0

∑
n∈S(ω1)

an e(nθ)
∑

k∈S(ω2)

b̄k e(−kθ)
∣∣∣ ∑
`∈S(ω2)

b` e(`θ)
∣∣∣p−2

dθ

∣∣∣∣∣∣ dt
. CεN

εL
p
2 + E ω2 E ω1 sup

x∈E(ω2)

∑
n∈S(ω1)

xn.(5.27)

Here

E(ω2) :=
{(∣∣∣〈e(n·), ∑

k∈S(ω2)

b̄k e(−k·)
∣∣∣ ∑
`∈S(ω2)

b` e(`·)
∣∣∣p−2〉∣∣∣)N

n=1

∣∣∣ sup
1≤n≤N

|bn| ≤ 1
}
⊂ RN

+ .
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By Lemma 5.1, it follows from (5.27) that

E ω sup
|an|≤1

∫ 1

0

∣∣∣ ∑
n∈S(ω)

an e(nθ)
∣∣∣p dθ(5.28)

. CεN
εL

p
2 + (1 +

√
L/s)E ω2 sup

x∈E(ω2)
|x|+ E ω2

∫ ∞

0

√
logN2(E(ω2), t) dt.

Now suppose the RMP holds at 2(p − 1) (so this holds for sure if p is an odd integer). Then by
Plancherel,

E ω2 sup
x∈E(ω2)

|x| ≤ CεN
ε E ω

∥∥∥ ∑
n∈S(ω)

e(n·)
∥∥∥p−1

2(p−1)
≤ CεN

ε
√

E ωA2(p−1),L(ω).

As far as the entropy term in (5.28) is concerned, the same analysis as in the random case shows that
if p ≤ 3, then

E ω2

∫ ∞

0

√
logN2(E(ω2), t) dt ≤ CεN

ε L
3
2 ,

or if p > 3 and the RMP holds at 2(p− 2), then

E ω2

∫ ∞

0

√
logN2(E(ω2), t) dt ≤ CεN

ε L
√

EA2(p−2),L,

see (4.64) and (4.65) for the details. Inserting all of this into (5.28) yields, under the assumption that
p > 3 and the RMP holds at p− 1, 2(p− 1), and 2(p− 2) (the case p ≤ 3 is similar),

E ω sup
|an|≤1

∫ 1

0

∣∣∣ ∑
n∈S(ω)

an e(nθ)
∣∣∣p dθ

. CεN
ε
{
L

p
2 + (1 +

√
L/s)

√
E ωA2(p−1),L(ω) + L

√
EA2(p−2),L

}
. CεN

ε

{
L

p
2 + (1 +

√
L/s)

(L2p−3

s
+ Lp−1

) 1
2
+ L

(L2p−5

s
+ Lp−2

) 1
2

}
. CεN

ε
[Lp−1

s
+ L

p
2 +

Lp− 3
2

√
s

]
.(5.29)

Recall from Lemma 5.5 that the desired bound is Lp−1

s + L
p
2 . If p = 3, then (5.29) does indeed agree

with this bound. Since the hypotheses involving the RMP hold in case p = 3, we are done with that
case, regardless of the relative size of L and s. Let us assume now that L ≥ s. Then (5.29) agrees
with the desired bound for all p. This means that we can run the same type of inductive argument
as in Corollary 4.14. We leave it to the reader to check that this proves (5.24) for all p ≥ 2 provided
L ≥ s. Finally, if L < s, then L < s ≤ a ≤ N

L and thus L ≤
√
N . In particular, #S ≤

√
N in that

case. In analogy with the random subset case, this suggests that S(ω) are Λ(p)-sets for 2 ≤ p ≤ 4
with high probability. Although perturbed arithmetic progressions are not covered by [B1], it turns
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out that the strategy from [B1] and [B2] is still relevant. More precisely, suppose first that 2 ≤ p ≤ 3.
Then (5.28) holds, even without the N ε-term. By Plancherel, but without appealing to any RMP,

(5.30) E ω2 sup
x∈E(ω2)

|x| ≤ E ω2 sup
|an|≤1

∥∥∥∣∣∣ ∑
n∈S(ω)

ane(nθ)
∣∣∣p−1∥∥∥

2
. K

p
2
p L

p−2
2 .

Here

Kp
p := E ω sup

|an|≤1

∫ 1

0

∣∣∣ ∑
n∈S(ω)

an e(nθ)
∣∣∣p dθ.

To pass to (5.30), one writes 2(p − 1) = p + (p − 2) and then estimates the (p − 2)-power in L∞.
Secondly, to bound the entropy term, set q = 2

3−p . Then by Plancherel the distance between any two
elements in E(ω2) is at most∥∥g|g|p−2 − h|h|p−2

∥∥
2

. ‖g − h‖q
(
‖g‖p−2

2 + ‖h‖p−2
2

)
. L

p−2
2 ‖g − h‖q,

where g, h ∈
√
LPS(ω2), see (4.55). As before, the entropy estimate therefore reads

E ω2

∫ ∞

0

√
logN2(E(ω2), t) dt .

√
LL

p−2
2

√
L = L

p
2 .

Inserting these bounds into (5.28) yields

Kp
p . L

p
2 + (1 +

√
L/s)K

p
2
p L

p−2
2 ≤ CL

p
2 +

1

2
Kp

p + C(1 + L/s)Lp−2.

Since Lp−2 ≤ L
p
2 in view of p ≤ 4, one obtains the desired bound

Kp
p . L

p
2 +

Lp−1

s

if 2 ≤ p ≤ 3 and regardless of the relative size of L and s. If 3 ≤ p ≤ 4, then the previous argument
needs to be modified in two places: Firstly, there is the issue of the O-term in (5.25). However, we just
showed that the RMP holds at p− 1 ≤ 3, and therefore (5.26) applies here as well (even without the
N ε-term). Secondly, the entropy bounds need to be modified. In case 3 ≤ p ≤ 4, one has 2(p−2) ≤ p.
Hence

‖g|g|p−2 − h|h|p−2‖2 ≤ ‖g − h‖∞
(
‖g‖p−2

2(p−2) + ‖h‖p−2
2(p−2)

)
≤ CεN

ε‖g − h‖q
(
‖g‖p−2

p + ‖h‖p−2
p

)
≤ CεN

ε sup
|an|≤1

∥∥∥ N∑
n=1

anξn(ω2)e(n·)
∥∥∥p−2

p
‖g − h‖q,

with g, h as above. By the usual arguments, cf. (4.64), it follows that

E ω2

∫ ∞

0

√
logN2(E(ω2), t) dt . LK

p−2
2

p ≤ 1

2
Kp

p + L
p
2 .

Inserting these bounds into (5.28) implies the desired bound.
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Remark 5.7. It is possible that one can make improvements on Theorem 5.6 similar to those in
Theorem 4.6, thus removing the condition L ≥ s in some range of p ≥ 4. This would require working
with Λ(p) type arguments as we just did in the end of the previous proof. But we do not pursue that
issue here.
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